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Abstract
Causal inference in observational studies relies on the conditional independence of
outcomes and treatment given confounding covariates. When confounders are miss-
ing not at random (MNAR), this condition fails, and causal parameters are no longer
identified. We consider scenarios where missingness of the confounder depend on
the confounder but is conditionally independent of the outcome given treatment and
confounders (OIM). We propose an efficient and doubly robust estimator of the av-
erage treatment effect (ATE); it is based on well-known sample averages of observed
outcomes and estimated conditional mean outcomes but with novel propensities and
weights that adjust for confounder missingness. To estimate these weights we invert
integral equations that relate observed distributions to: (i) the joint propensity score,
defined as the probability of receiving treatment and having all confounders observed,
and (ii) the distribution of confounders conditional on missingness, that are unob-
served due to missingness. The inversion relies on OIM and a completeness of the
full-data distribution in the outcome. To extend the analysis to prevalent empirical
settings with insufficient variation in the outcome, e.g., binary outcome or multiple
continuous confounders with missing values, we propose a low-rank assumption on
the missingness mechanism that regularizes an ill-posed integral equation and leads
to efficiency gains when the inversion is well-posed. Furthermore, we derive the semi-
parametric efficiency bound for the ATE in OIM setting, show that our estimator
achieves the bound, and enjoys novel and standard robustness properties of double
machine learning estimators. We benchmark our estimator with simulations and
three empirical applications: the impact of the Job Corps program on employment,
the effect of smoking on blood lead levels, and the influence of education on general
health satisfaction.
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1 Introduction

Estimating the average treatment effect, denoted ATE or τ , in observational studies cru-
cially relies on the unconfoundedness assumption that potential outcomes and treatment
are conditionally independent given confounding covariates (Rosenbaum and Rubin, 1984;
Imbens and Rubin, 2015). When observations of confounders are missing in a way that
depends on the values of outcomes or covariates, referred to as missing not at random
(MNAR), unconfoundedness fails. Consequently, the mean conditional outcomes and propen-
sity score cannot be identified, and standard inferences based on complete observations are
inconsistent due to selection bias. This issue is prevalent in practice. For instance, in a
survey, low education and high income values are commonly undisclosed by respondents in
order to protect their privacy (Bollinger et al., 2019).

Existing approaches to missing confounders typically rely on strong assumptions on the
missingness mechanism. If data are missing completely at random (MCAR), meaning the
event of missingness is independent of every variable in the study, including those with
missing values, then complete-case analysis is valid, albeit inefficient. More often, analysts
make the missing at random (MAR) assumption. This holds when the event of missingness
depends only on completely observed variables and not on variables with missing values.
Under MAR the full-data distribution is identified and multiple imputation or inverse-
probability weighting methods can be used. The MAR assumption requires the event that
a confounder value is missing to be conditionally independent of that confounder given
treatment, outcome and completely observed confounders. However, if the missingness
mechanism is not independent of the missing values, e.g., withholding education when
it is low or income when it is high, these methods fail and yield inconsistent estimates.
Accounting for missing confounders in the MNAR setting requires qualitatively different
techniques and motivates our work.

We consider estimation of the ATE in scenarios where the event of confounder missing-
ness may depend on the confounder value but is independent of the outcome (OIM). More
precisely, following the framework of Yang et al. (2019), we assume that the missingness
mechanism is conditionally independent of the outcome given treatment and confounders.
This assumption can be understood by analogy with the unconfoundedness of treatment:
under this assumption, if the potential outcomes are also conditionally independent of both
treatment and missingness given the confounders, then the conditional average treatment
effect (CATE) is identified via conditional mean outcomes in the treated and control strata
defined by the fully observed confounders. What is not immediate is how one aggregates
these conditional effects into the unconditional ATE, since the marginal distribution of
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the confounders is not observed due to missingness. Furthermore, we investigate the most
statistically efficient way to achieve this.

We propose an efficient and doubly robust estimator of the ATE. Our estimator is based
on two familiar weighting strategies: (i) weighting the observed outcomes by the reciprocal
of the probability of confounder missingness and treatment; (ii) weighting the conditional
mean treated/control outcomes by the marginal distribution of confounders conditional on
missingness. The econometric challenge here is that both nuisance weight functions are
not directly observed in the data due to missing confounder values. Indeed, we require the
conditional probability of treatment and missingness given confounders, and the probability
density of confounders conditional on missingness, which are not fully observed. Instead,
each weight function is identified via an integral equation that relates a observed marginal
outcome density to a mixture of an unobserved weight function (solved for) and a observed
conditional distribution of the outcome given confounder and missingness.

Integral equations are continuous/infinite analogues of finite matrix equations; when
full-data distribution is discrete this analogy is exact, while many intuitions remains valid in
the continuous case. Recall that inverting a linear system requires the matrix column rank
be greater than the number of equations. The counterpart condition for integral equations
is completeness of the integrand signature function. In our OIM setting, completeness
requires that there is quantitatively more variation in the outcome than in the confounders
with missing values; in the discrete case, this is full column rank of a contingency table.
When completeness holds, conditional distribution of confounders given the missingness
event and conditional probability of missingness given confounders are identified.

The completeness assumption is too restrictive for common empirical settings, e.g.,
when outcome is binary and confounder is not, or when there are multiple continuous con-
founders with missing observations. We propose a low-rank assumption on the missingness
mechanism to accommodate OIM analysis in these empirical settings. The low-rank as-
sumption shifts the completeness condition on the variation of the confounder, which is
typically not restrictive in practice.

With the key weight functions identified, we follow well-known strategies for identifying
the ATE. We construct a doubly robust estimators by inverse joint propensity weighting
(IJPW) and averaging the estimated CATE obtained from the complete-data. We derive
the semiparametric efficiency bound for the ATE by characterising the tangent space. We
then show that the influence function of our estimator lies within that space, which ensures
that our estimator achieves the smallest asymptotic variance among regular estimators. By
construction, our estimators remain consistent as long as at least one of the two identifica-
tion weighting strategies is consistently implemented.
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We consider two estimation approaches: (i) plug-in of nuisance functions estimated
with full data, (ii) double machine learning (DML) with sample-splitting. Our plug-in
estimator is consistent if the estimated nuisance functions are consistent in quadratic mean
and does not require Donsker-class conditions. In empirical settings where completeness
of outcome distribution is plausible, our low-rank assumption can be used to construct a
doubly robust estimator that is consistent as long as either the completeness or the rank
assumptions hold. Solving integral equations specified with estimated input functions is
an ill-posed inverse problem (Newey and Powell, 2003), meaning that small estimation
errors in the inputs lead to discontinuous changes in the solution. We propose ridge series
estimators for nuisance functions estimated by inverting integral equations to regularize
the ill-conditioned inversion.

We benchmark our estimators with synthetic designs and three real datasets. Our toy
design includes a single confounder subject to missingness generated by a nonlinear mech-
anism; our realistic design employs six confounders and an aggressive missingness pattern
with 49% of incomplete data. In simulations, our efficient estimators exhibit negligible bias,
satisfactory coverage, and steadily decreasing variance, by contrast the nonparametric al-
ternative (Yang et al., 2019) has poorer confidence-interval coverage. The DML estimator
consistently outperforms the plug-in. We then illustrate our methodology in three empirical
applications: the causal effect of a job training program on employment (binary outcome),
the effect of smoking on blood-lead levels, and the effect of education on general health
satisfaction. In all applications, our estimators yield point estimates of greater magni-
tude and tighter confidence intervals compared with the nonparametric alternative (Yang
et al., 2019); we conclude that accounting for semiparametric structure of the problem
meaningfully improves both finite-sample precision and asymptotic power.

We make three contributions to the literature. First, we extend the OIM framework
(Bartlett et al., 2014; Miao et al., 2018; Yang et al., 2019; Miao et al., 2023; Lu and Ash-
mead, 2018; Zuo et al., 2024) to economic applications, where missing data are prevalent
and often exhibit selection patterns while variation in outcomes is typically low and the
completeness condition does not hold. For example, in estimating the ATE of job-training
programs on employment, the LaLonde dataset (LaLonde, 1986; Dehejia and Wahba, 1999;
Imai and Ratkovic, 2014; Armstrong and Kolesár, 2021; Breunig et al., 2025) contains
roughly 10% of observations with missing baseline income that do not arise from unem-
ployment status, while the dataset analyzed by Lee (2009) exhibits over 30% missingness in
baseline income and parental education. Standard approaches for missing confounders of-
ten impose MAR or MCAR assumptions for tractability (Rubin, 1976; Agarwal and Singh,
2021), yet these assumptions are frequently violated in applied work due to nonresponse or
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administrative censoring that depends on these unobserved values (Bollinger et al., 2019).
The OIM assumption allows missingness to depend on the missing confounder, but rules out
mechanisms that depend on the outcome (Heckman, 1979; Newey et al., 1990; Lee, 2009;
Honoré and Hu, 2024), and is plausible in empirical settings where outcomes are realized
after confounders are collected. We propose a new identification strategy for OIM scenar-
ios with limited variation in outcomes, including binary outcomes, which are prevalent in
economics and cannot be studied with any existing methods. Whereas existing methods
recover the distribution of missing confounders from outcomes, we instead recover the miss-
ingness mechanism from completely-observed confounders. Both approaches achieve point
identification of the ATE without relying on instruments or bounding strategies, provid-
ing tractable alternatives to partial-identification methods (Horowitz and Manski, 2000;
Molinari, 2010).

Second, we contribute to the OIM literature a characterization of the semiparametric
efficiency bound (Robinson, 1988; Chamberlain, 1992; Bickel et al., 1993; Newey, 1994; Ai
and Chen, 2003; Hirano et al., 2003; Tsiatis, 2006; Hahn and Ridder, 2013; Chernozhukov
et al., 2018; Hirshberg and Wager, 2021; Chen et al., 2025; Borusyak and Hull, 2025) of the
ATE functional. (Hahn, 1998). Under OIM the tangent space is not the entire Hilbert space
(Kennedy, 2016). This restriction arises because OIM models impose testable constraints
on the observed-data distribution (Sjölander and Hägg, 2025). Causal parameters typically
admit both a regression-based and a propensity-based representation, each contributing to
the semiparametric efficiency bound. Our estimator operationalizes two separate integral
equations in order to leverage full statistical power of the data via both the regression and
propensity score nuisance parameters.

Third, we bridge the OIM literature with the DML literature. We extend the classi-
cal doubly robust estimator of the ATE to the OIM setting. Compared to the classical
estimator, ours requires additional steps: (a) solving integral equations for unobserved
propensities and densities, (b) modifying the classical doubly-robust estimator to account
for missing data using the weights from step (a). Working within the classical doubly robust
estimator allows practitioners to leverage knowledge they already have. Furthermore, in
addition to the standard robustness properties, the doubly robust estimator in our setting
enables robustness to violations of the completeness assumption of the OIM setting when-
ever both can be used. Following the DML literature, we enable flexible high-dimensional
estimation of nuisance functions and solution of the integral equation via machine learning
(Chen and Newey, 2020; Newey and Powell, 2003; Singh and Zhang, 2019; Xu and Zhu,
2020; Chen and Zhan, 2023; Fonseca and Xu, 2024). Our approach builds on ideas from
nonparametric instrumental variables and completeness-based identification (Newey and
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Powell, 2003; Hu, 2008; Hu and Schennach, 2008; D’Haultfœuille, 2011; Chesher, 2003;
Hall and Horowitz, 2005; Chen et al., 2011; Berry and Haile, 2014; Schennach, 2016; Hu
and Shiu, 2018; D’Haultfœuille and Février, 2015; Berry and Haile, 2024), linking them to
recent developments in doubly robust estimation under novel data structures (Sant’Anna
and Zhao, 2020b; Arkhangelsky et al., 2021; Ji et al., 2023; Cui et al., 2024; Sun et al.,
2025).

The remainder of the paper is structured as follows. In section 2, we outline our the-
oretical framework and basic assumptions. In Section 3, we focus on identification where
we propose identification strategies based on solving two novel integral equations derived
from the observed data. In Section 4 and 5, we introduce a doubly robust estimator, and
establish its theoretical guarantees (e.g.,

√
n-consistency, asymptotic linearity, and local

semiparametric efficiency). Sections 6 and 7 present numerical simulations and an em-
pirical application, respectively, to validate the estimator’s finite-sample performance and
practical use. Proofs, technical derivations, and additional classical identification strategies
are provided in the Supplementary material.

2 Setup

2.1 Notation

Let W denote a generic random variable and (W1, . . . ,Wn) denote an observed independent
and identically distributed sample from the distribution of W . Convergence in distribution
is denoted by ⇝, and convergence in probability is indicated as P→. We say Wn = OP (rn)
if Wn/rn is bounded in probability, and Wn = oP (rn) if Wn/rn

P→ 0. The empirical
measure is denoted by Pn, and for any function θ, the sample average is written as Pn(θ) :=
Pn{θ(W )} = 1

n

∑n
i=1 θ(Wi). Similarly, for a (possibly random) functional θ̂, we define

P(θ̂) :=
∫
θ̂(w)dP (w), and the squared L2(P ) norm is ∥θ̂∥2

2 =
∫
θ̂(w)2dP (w). Here, P

in the integral denotes the true probability measure of W . Define the indicator function
for the event W = w0 as I{W = w0}, which equals 1 if W = w0 and 0 otherwise. Let
[n] := {1, · · · , n}.

2.2 Framework and assumptions

We adopt a potential outcomes framework. Let A ∈ {0, 1} denote binary treatment (0=con-
trol, 1=treatment). For treatment level a, let Y (a) be the potential outcome under treat-
ment a. The observed outcome is Y = AY (1) + (1 − A)Y (0). Let X = (X1, . . . , Xp) be
a vector of p-dimensional pre-treatment confounders, with an independent and identically
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distributed sample of size n from {A,X, Y (0), Y (1)}. We assume that Y (1) and Y (0) both
have finite variance. Define the conditional average treatment effect (CATE) as τ(X) :=
E[Y (1) − Y (0)|X], the average treatment effect (ATE) as τ := E[Y (1) − Y (0)] = E[τ(X)],
and the conditional mean potential outcome µa(X) = E[Y (a) | X] for a = 0, 1.1 The fol-
lowing are standard assumptions in causal inference with observational studies (Rosenbaum
and Rubin, 1983).

Assumption 1. (Unconfoundedness) {Y (0), Y (1)} ⊥⊥ A | X.

Assumption 2. (Overlap) There exist constants c1 and c2 such that 0 < c1 ≤ e(X) ≤ c2 <

1 almost surely, where e(X) := P (A = 1 | X) is the propensity score.

Under these assumptions, the average treatment effect τ = E[E(Y |A = 1, X)−E(Y |A =
0, X)] becomes well-defined and identifiable from the observed data distribution. Rosen-
baum and Rubin (1983) establish that {Y (0), Y (1)} ⊥⊥ A | e(X), demonstrating that
propensity score adjustment suffices for confounding removal for an ideal case. The ef-
fect τ can then be estimated by propensity score matching, subclassification, or weighting
methods.

We focus on a setup in which confounders X contain missing values, precluding di-
rect identification of the propensity score. Assume we have n independent and identically
distributed draws from {A,X, Y (1), Y (0), R}, where R = (R1, . . . , Rp) is the random miss-
ingness indicator vector and Rj = 1 if Xj is observed and 0 otherwise. Let R denote
all possible missingness patterns. Define 1p and 0p as the p-vectors of all ones and zeros,
respectively. Following Rubin (1976), confounders partition into observed Xr and missing
Xr components for patterns R = r ∈ R. For example, when R1 = 1 and Rj = 0 for j ≥ 2,
then XR = X1 and XR = (X2, . . . , Xp). We make the following assumption about the
missing data patterns formalized by Yang et al. (2019).

Assumption 3. (Outcome-independent missingness) {Y (0), Y (1)} ⊥⊥ R | (A,X).

We summarize other missing mechanisms in the literature and their limitations into
the Supplementary material S. Figure 1 encodes our framework for Assumption 1 and 3 by
causal diagrams (Pearl, 1995):

(a) A and Y share no common causes other than X.

(b) R and Y share no common causes other than A and X.
1The parameter of interest in this paper is τ but one can extend our results to average treatment effect

on the treated.
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A YR

X

U

Figure 1: A simple causal diagram consistent with Assumption 1 and 3 (unconfoundedness
and outcome-independent missingness). The The treatment variable A, outcome Y , and
missing indicator R are observed. The variable U is unobserved, and the confounders X
contain missing values.

Our framework is built to accommodate the challenges in missing data studies. Specifically,
we permit the possibility that the missingness indicator R and the treatment A share
unmeasured common causes U as in Figure 1. That is, the process that leads data to be
missing may itself be influenced by factors which also affect treatment assignment, and
these factors may not all lie in the observed covariate set. We also allow the missingness
mechanism to depend on confounders that themselves may be missing (XR̄), meaning that
whether an observation is missing can depend on covariate values that are unobserved
in that unit. Moreover, we accommodate the situation where missingness occurs after
treatment, so that R may depend on A rather than being restricted to pre-treatment
covariates alone.

For example, in a study of a job training program where individuals self select into
training and we measure their earnings one year later, suppose we observe baseline covari-
ates such as age and education but one key confounder, baseline income, is missing for some
participants. The missingness of baseline income is itself tied to the income level. At the
same time, baseline income influences the likelihood of enrolling in the training program.
Thus the missingness indicator and the treatment decision share a common cause (baseline
income). The unobserved factor U might represent the quality and efficiency of the local
job training agency’s administration, which affects both the likelihood that a participant
enrolls in the training program and the likelihood that their baseline income is accurately
recorded.

Throughout identification and estimation I rely on Assumption 3. One potential con-
cern is that in the illustrative example the randomness pertains only to a single variable (the
missingness of baseline income depends on the income itself). Under what conditions does
conditioning on all confounders guarantee independence between the missingness mecha-
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nism and the outcome? The following remark addresses those conditions.

A YR

X

Figure 2: A simple causal diagram consistent with Remark 1 (sufficient condition for
outcome-independent missingness). The treatment variable A, outcome Y , and missing
indicator R are observed. The confounders X contain missing values.

Remark 1. A useful sufficient condition for Assumption 3 (outcome-independent missing-
ness) is the following. If

(A, Y ) ⊥⊥ R | X

hold, Assumption 3 is satisfied. This is a direct result of the contraction variant (Dawid,
1979). In other words, our Assumption 3 also covers the scenario in which missingness R
is independent of Y once we condition on X, provided that R is independent with (A, Y )
conditional on X. Intuitively, the interpretation is that R is influenced only by X and not
by either A or Y .

A YR

X1 X2

U

Figure 3: A simple causal diagram consistent with Remark 2 (sufficient condition for
outcome-independent missingness). The treatment variable A, outcome Y , and missing
indicator R are observed. The variable U is unobserved, and the confounders X1 contain
missing values.

Remark 2. There is also another similar useful sufficient condition by the contraction
variant (Dawid, 1979) for our setting. We write X⊤ = (X⊤

1 , X
⊤
2 ). Under Assumption 1, if

(X2, Y ) ⊥⊥ R | (A,X1)
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hold, Assumption 3 is satisfied. In other words, the framework allows for the missing-data
mechanism depends on (A,X1, X2) yet only requires that the independence condition hold
with respect to (A,X1) and X2 carries no additional information about the missingness
mechanism R.

3 Identification

In this section, we first present a toy example in which both X and Y are continuous and
X is one-dimensional, and we outline our identification strategy in subsection 3.1 without
rigorous proof. Then, in subsection 3.2, we extend and formalize our arguments to cover
the case where X and Y may be discrete and where X and R are multidimensional by a
generic measure.

3.1 Identification under a simple scenario

In this motivating subsection, we use (⋆) to highlight a key equation. We assume X is
one-dimensional, and that both X and Y are continuous with support X and Y . We work
under the following standard setup: let (A,X, Y,R) admit a joint density f , and suppose
we observe only

f
(
A = a, X = x, Y = y, R = 1

)
and f

(
A = a, Y = y, R = 0

)
.

Denote the observed data by O = {A, XR, Y, R}. We build upon the unconfoundedness
and OIM assumptions (Assumptions 1 and 3), as illustrated in Figure 1.

Causal identification in Yang et al. (2019) proceeds by exploiting a conditional in-
dependence structure to derive an integral equation that recovers the full-data density
f(A = a, X = x, Y = y). For simplicity, we assume that all relevant conditional densities
are strictly positive; for example, f

(
R = 1

∣∣∣ A = a, X = x, Y = y
)
> 0. The standard

methodology relies on solving for a unknown function g(x) via an integral equation of the
form

∫
g(x)f(x, y)dx = h(y).

from known f(x, y) and h(y).
In order to solve this integral equation, one need to assume that the dimension of

the support of X exceeds that of the support of Y ; i.e.|X | > |Y|. The formal condition
guaranteeing a unique solution to the integral equation when the support is discrete (or
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mixed) is given in Definition 1. We solve three integral equations below which work as
the first step for our possible second step identification for the ATE. The first one is from
Yang et al. (2019). The second and third equations are new contributions. The third in
particular incorporates a low-rank condition on the missing-data pattern to make |X | > |Y|
possible.

(a) Integral equations. The integral equations serve to recover the latent distributions
and act as intermediate steps in identifying the ATE.

(a.1) Integral equation 1. (Yang et al., 2019) The first integral equation is solving

(⋆) f(A = a, Y = y,R = 0) =
∫ P (R = 0 | A = a,X = x)
P (R = 1 | A = a,X = x)f(A = a,X = x, Y = y,R = 1)dx

In this equation we link the observed joint density f(A = a, Y = y, R = 0) with the
complete-case joint density f(A = a, X = x, Y = y, R = 1) via a weight that depends
only on x, for fixed a ∈ {0, 1}. Solving this equation needs |X | ≤ |Y|. The equation holds
since

f(A = a, Y = y,R = 0) =
∫
f(A = a,X = x, Y = y,R = 0)dx

=
∫ f(A = a,X = x, Y = y,R = 0)
f(A = a,X = x, Y = y,R = 1)f(A = a,X = x, Y = y,R = 1)dx

=
∫ P (R = 0 | A = a,X = x, Y = y)
P (R = 1 | A = a,X = x, Y = y)f(A = a,X = x, Y = y,R = 1)dx

=
∫ P (R = 0 | A = a,X = x)
P (R = 1 | A = a,X = x)f(A = a,X = x, Y = y,R = 1)dx.

The first equality reflects the computation of a marginal density. The second equality arises
by dividing the numerator and the denominator by the same number. The third equality
similarly follows by dividing the numerator and the denominator by f(A = a, X = x, Y =
y). The fourth equality holds under the OIM assumption. The formal result and discussion
are under Lemma S1.

(a.2) Integral equation 2. The second integral equation is solving

(⋆) f(Y = y | A = a,R = 0) =
∫
f(X = x | A = a,R = 0)f(Y = y | A = a,X = x,R = 1)dx

which can be viewed as a Bayes-rule variation of integral equation 1. Solving this
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equation needs |X | ≤ |Y|. It links the conditional distributions under R = 0 and R = 1
through a weighting function that depends only on x. The equation holds since

f(Y = y | A = a,R = 0) =
∫
f(X = x, Y = y | A = a,R = 0)dx

=
∫
f(X = x | A = a,R = 0)f(Y = y | A = a,X = x,R = 0)dx

=
∫
f(X = x | A = a,R = 0)f(Y = y | A = a,X = x,R = 1)dx

The first equality reflects the computation of a marginal density over x. The second equality
follows from the definition of conditional density. The third equality holds under the OIM
assumption. The formal result and discussion are under Lemma 1.

(a.3) Integral equation 3. We have the third integral equation using a low rank condi-
tion,

(⋆) f(A = a, Y = y)

=
∫
ϕa(ỹ)

 ∫ f(Ỹ = ỹ | A = a,X = x,R = 1)f(A = a,X = x, Y = y,R = 1)dx
dỹ.

where f(A = a, Y = y) is the target full-data joint distribution. The inner integral over x
integrates out the confounders based on the observed distributions, while the outer integral
over ỹ combines information across outcome values. In Theorem 3, we show that ϕa(y) is
identified by the key integral equation (⋆) if f(Y = y | A = a,X = x,R = 1) is complete
in X. Solving this equation needs |X | ≥ |Y|. The integral equation 3 relies on an
assumption of a low-rank structure,

∫
ϕa(y)f(Y = y | A = a,X = x,R = 1) dy = 1

P (R = 1 | A = a,X = x) .

so the equation (⋆) holds since

f(A = a, Y = y) =
∫ 1
P (R = 1 | A = a,X = x, Y = y)f(A = a,X = x, Y = y,R = 1)dx

=
∫ 1
P (R = 1 | A = a,X = x)f(A = a,X = x, Y = y,R = 1)dx

=
∫ [∫

ϕa(ỹ)f(Ỹ | A = a,X = x,R = 1p)dỹ
]
f(A = a,X = x, Y = ỹ, R = 1p)dx

=
∫
ϕa(ỹ)

 ∫ f(Ỹ = ỹ | A = a,X = x,R = 1)f(A = a,X = x, Y = y,R = 1)dx
dỹ.
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The first equality reflects the computation of a marginal density over x. The second equality
follows from the OIM assumption. The third equality relies on the low-rank condition, and
the fourth equality applies Fubini’s theorem. For illustration, we assume a binary outcome,
y = {0, 1}. Then the low rank condition becomes

1∑
y=0

ϕa(y)f(Y = y | A = a,X = x,R = 1) = 1
P (R = 1 | A = a,X = x) .

which is equivalent to

1∑
y=0

ϕa(y)f(Y = y, A = a,X = x | R = 1) = 1

by multiplying both sides of the equation by P (R = 1 | A = a,X = x). With this
equivalence, a sufficient condition for this low rank condition can be easily shown as

c1f(Y = 1, A = a,X = x | R = 1) + c2 = f(Y = 0, A = a,X = x | R = 1)

for some constant c1 and c2 where we choose ϕa(1) = −c1ϕa(0) and ϕa(0) = 1
c2

. More
intuitively, it is also easy to show that one specific example for this sufficient condition is

f(Y = 1, X = x | A = a,R = 1) = 1
2 e

−|x|, f(Y = 0, X = x | A = a,R = 1) = 0.3 + e−|x|.

for some L1 and L2 such that x ∈ [L1, L2] and the joint densities above integrate to one.
The formal result and discussion are centered around Assumption 6.

(b) Final identifications. The final identification results serve to connect the latent
distributions to the ATE by two familiar nuisance weighting strategies: (i) weighting the
observed outcomes by the reciprocal of the probability of confounder missingness and treat-
ment; (ii) weighting the conditional mean treated/control outcomes by the marginal distri-
bution of confounders conditional on missingness. Our final identification differs from that
of Yang et al. (2019) and can be readily extended to a sample analog, thereby enabling the
construction of a doubly robust estimator.

(b.1) Final identification 1. Under Assumptions 1 and 3, we can identify the ATE τ by

τ = E
[
AI{R = 1}Y

e1(X) − (1 − A)I{R = 1}Y
e0(X)

]
,
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where

(⋆) ea(X) := P (A = a,R = 1 | X)

for a = 0, 1. In this final identification, we assume that the nuisance ea(X) is known.
Different with classical inverse propensity score weighting (Rosenbaum and Rubin, 1983),
we adjust the weight to account for missingness. See the proof of Theorem 1. With this
identification, we are able to use sample analog to estimate ATE,

τ̂ = 1
n

n∑
i=1

[
AiI{Ri = 1}Yi

e1(Xi)
− (1 − Ai)I{Ri = 1}Yi

e0(Xi)

]
.

(b.2) Final identification 2. Under Assumptions 1 and 3, by the law of iterated expec-
tation, the ATE τ is identified by

τ = E[τ(A,XR, R)],

where

(⋆) τ(A,XR, R) :=E[E(Y |A = 1, X,R = 1) − E(Y |A = 0, X,R = 1) | A,XR, R]

=E[E(Y (1) − Y (0)|X) | A,XR, R]

In this final identification, we assume that the nuisance τ(A,XR, R) is known. With this
identification, we are able to use sample analog to estimate ATE,

τ̂ =
n∑

i=1
[τ(Ai, XRi

, Ri)]

= 1
n1

∑
i:Ri=1

τ(Ai, Xi, Ri = 1) + 1
n0

∑
i:Ri=0

τ(Ai, Ri = 0),

where
n1 =

n∑
i=1

I{Ri = 1} and n0 =
n∑

i=1
I{Ri = 0}.

(c) Identification of nuisances. Finally, we connect the two final identifications to the
three integral equations. We come up with three identification methods.

(c.1) Identification 1. Let the nuisance ea(X) be identified from integral equation 1.
Therefore, solving this equation needs |X | ≤ |Y|. Specifically, notice that since we are able
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to solve P (R=0|A=a,X=x)
P (R=1|A=a,X=x) by the integral equation, we can identify,

P (R = 1 | A = a,X = x) = 1
1 + P (R=0|A=a,X=x)

P (R=1|A=a,X=x)

because the probabilities of all possible values sum to one. Therefore, nuisance ea(X) is
identified by

ea(X) = P (A = a,R = 1 | X) = f(A = a,X,R = 1)∑1
a′=0

f(A=a′,X,R=1)
P (R=1|A=a′,X)

.

In the end, we use the identified nuisance function ea(X) to identify the ATE through final
identification 1, treating ea(X) as known.

(c.2) Identification 2. Let the nuisance τ(A,XR, R) be identified from integral equa-
tion 2. Therefore, solving this equation needs |X | ≤ |Y|. Specifically, notice that because
we are able to identify f(X = x | A = a,R = 0) by the integral equation, we can further
identify τ(A,XR, R = 0) = τ(A = a,R = 0) by

E[E(Y |A = 1, X,R = 1) − E(Y |A = 0, X,R = 1) | A = a,R = 0]

=
∫

[E(Y |A = 1, X = x,R = 1) − E(Y |A = 0, X = x,R = 1)] f(X = x|A = a,R = 0)dx.

With τ(A,XR, R = 1) = τ(A = a,X,R = 1) = E(Y |A = 1, X = x,R = 1) − E(Y |A =
0, X = x,R = 1), we are able to identify the τ(A,XR, R). In the end, we use the identified
nuisance function τ(A,XR, R) to identify the ATE through final identification 2, treating
τ(A,XR, R) as known.

(c.3) Identification 3. The nuisance ea(X) is identified from integral equation 3.
Let The nuisance ea(X) be identified from integral equation 3. Therefore, solving this
equation needs |X | ≥ |Y|. Notice that since we are able to solve ϕa(y) by integral, we can
identify,

P (R = 1 | A = a,X = x) = 1∫
ϕa(y)f(Y = y | A = a,X = x,R = 1)dy

Therefore, nuisance ea(X) is identified by

ea(X) = P (A = a,R = 1 | X) = f(A = a,X,R = 1)∑1
a′=0

f(A=a′,X,R=1)
P (R=1|A=a′,X)

.
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In the end, we use the identified nuisance function ea(X) to identify the ATE through final
identification 1, treating ea(X) as known.

(d) Discussion. In general, one can combine the identification results (3.1) and (3.2), or
(3.2) and (3.3), to form a doubly-robust estimator.2 Because in most cases |X | ≥ |Y| is
rare, we focus on the latter combination, which accommodates both dimension-regimes. A
detailed discussion of the doubly-robust estimator appears in Section 4.

3.2 Generalized identification

In this subsection, we first revisit formally the identification approach of Yang et al. (2019)
in subsection 3.2.1, which underpins our alternative identification formulas and motivates
our doubly-robust estimator. We propose three new identification strategies. The first two
adhere to the standard completeness regime (i.e., they require a dimension-type condition
that the outcome Y is “richer” than the confounders X) and achieve identification of the
average treatment effect τ via: (i) weighting the observed outcomes by the reciprocal of
the probability of confounder missingness and treatment; (ii) weighting the conditional
mean treated/control outcomes by the marginal distribution of confounders conditional on
missingness. We refer to these as the first set of identification formulas. The third strategy
operates in the converse regime, when X has greater “dimension” than Y , and leads to
an integral equation of τ through weighting of the missingness and treatment mechanisms.
We refer to this as the second set of identification formulas.3

3.2.1 Identification method in the literature

We work under the standard setup: let (A,X, Y,R) admit a joint density f (w.r.t. an
appropriate dominating measure ν, which covers both discrete and continuous cases), and
suppose we observe only f(A,XR, Y, R); denote the observed data by O = {A,XR, Y, R}.
We build upon the unconfoundedness and OIM assumptions (Assumptions 1 and 3), as
illustrated in Figure 1. Causal identification of the model proceeds by using the condi-
tional independence structure to construct an integral equation that recovers the full data
density f(A,X, Y ). To derive the integral equation, the distribution requires the following
additional assumption:

Assumption 4. (Non-degenerate missingness) There exists some constant c such that
P (R = 1p | A,X, Y ) ≥ c > 0 almost surely.

2The low-rank condition for f(X = x | A = a,R = 0) is left for future work.
3We leave the low-rank condition for the distribution of X conditional on missingness as future work;

we nonetheless refer to the resulting expression as the alternative identification formulas for consistency.
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Then, the relationship between full data and observed data density can be well defined
by:

f(A,X, Y,R = 1p) = f(A,X, Y )P (R = 1p | A,X, Y ), (1)

and thus we are able to identify f(A,X, Y ) by identifying P (R = 1p | A,X, Y ).
To achieve this goal, the key functional by utilizing Assumption 3 for equality and

Assumption 4 for well-definedness is given by

ξra(X) := P (R = r | A = a,X, Y )
P (R = 1p | A = a,X, Y ) = P (R = r | A = a,X)

P (R = 1p | A = a,X) , (a = 0, 1; r ∈ R). (2)

This functional plays a crucial role because it relates the full data distribution with the
complete-case distribution through the following integral equation:

f(A = a,Xr, Y, R = r) =
∫
ξra(X) f(A = a,X, Y,R = 1p) dν(Xr̄). (3)

Equation (3) holds by virtue of Lemma S1. There are a few remarks for the non-standard
notations in these equations (sometimes we refer to cases such as Equation (3) as multiple
equations based on values of a and r). We use these non-standard notations for brevity of
the formulas and to match Yang et al. (2019).

Remark 3. Whenever a missingness-indicator vector r ∈ {0, 1}p satisfies r = 1p (i.e. all
components are observed), we adopt the convention that Xr̄ = X0p = ∅, and accordingly∫
f(X)dν(∅) = f(X). This is a not a standard result in Lebesgue integration theory;

rather we adopt it here as a convenient convention for the degenerate case when the set of
integration variables is empty.

Remark 4. One should treat X and Y as random variables. If we denote a particular
realization by X = x and Y = y. Then

f(A = a,Xr = xr, Y = y,R = r) =
∫
ξra(x)f(A = a, X = xr, Y = y, R = 1p)dν(xr̄).

However, here and in subsequent formulas we suppress the explicit “= x” and “= y” nota-
tions for realizations, in the same spirit as the classic paper Rosenbaum and Rubin (1983),
where one writes e(X) := P (A = 1 | X) rather than e(x) = P (A = 1 | X = x) for ATE
identification.

Remark 5. The generic measure ν(·) is for the reference of continuous or discrete vari-
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ables. For a continuous measure,

f(A = a,Xr = xr, Y, R = r) =
∫
ξra(x) f(A = a,X = x, Y,R = 1p) dxr̄.

And for a discrete measure,

f(A = a,Xr = xr, Y, R = r) =
∑

r̄

ξra(x) f(A = a,X = x, Y,R = 1p).

Solving this linear operator reduces to tackling a Fredholm integral equation of the first
kind (Kress, 1999). Such equation relies on the concept of completeness for general X and
Y , which is closely related to the notion of a complete statistic (Lehmann and Scheffé,
1950; Newey and Powell, 2003).

Definition 1. A function f(X, Y ) is complete in Y if, for any square-integrable function
g(X), the condition

∫
g(X)f(X, Y ) dν(X) = 0 implies that g(X) = 0 almost surely.

Although the completeness assumption is conceptual, intuitive sufficient conditions are
provided by Newey and Powell (2003) and by D’Haultfoeuille (2011) (see Supplementary
material). Intuitively, solving the Fredholm integral equation amounts to recognizing that
we observe weighted averages of X under different weighting schemes, even though some
components of X are unobserved. In the discrete case, this condition requires that the
dimension of Y exceeds the dimension of X. Building on their results, we introduce the
following assumption to guarantee identification of the functional ξra.

Assumption 5. The joint distribution f(A = a,X, Y,R = 1p) is complete in Y for a = 0, 1.

Remark 6. Assumption 2 (unconfoundedness) is actually implied by Assumption 5 (com-
pleteness), and a demonstration of this appears in the proof of Remark 1 in Yang et al.
(2019). In particular, if e(X) > 0 were violated so that e(X) = 0 on a nonnegligible mea-
surable set, then there would exist a measurable region on which f(A = a,X, Y,R = 1p) = 0,
which in turn would invalidate completeness. Hence, in all subsequent theorems and lemmas
we omit Assumption 2, treating it as redundant under Assumption 5.

We include the standard identification from the literature to identify ξra in the Supple-
mentary material S.2.1. Our first identification strategy in the first set of integration-based
derivation include this step (see Section 3.2.2, Theorem 1) employs a similar logical struc-
ture. In this equation (3), the observed distribution on the left reflects averages over
unobserved values of X, taken under different realizations of Y . Having identified ξra, we
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can directly recover τ(X) from the observed data by

τ(X) = E(Y | A = 1, X) − E(Y | A = 0, X) (4)

= E(Y | A = 1, X,R = 1p) − E(Y | A = 0, X,R = 1p), (5)

where the first equation is by Assumption 1 and the second equation is by Assumption 3.
We can thus obtain τ accordingly,

τ =
1∑

a=0

∫
τ(X) f(A = a,X,R = 1p)

P (R = 1p | A = a,X) dν(X) (6)

by averaging τ(X) over the identified f(X) because the numerator is from the complete-case
distribution and the denominator comes from the identified ξra.

3.2.2 First set of identification formulas: completeness in Y

We relate the functional ξra to the probability of observing the missing data pattern r given
treatment A = a, confounders X, i.e. P (R = r | A = a,X) = ξra(X)∑

r′∈R ξr′a(X) , which naturally
connects to the joint propensity score, for treatment and complete observation, formalized
in Theorem 1. Although equation (6) makes use of ξra, we opt for a more direct strategy
that exploits this connection to the joint propensity score to identify causal effects.

Theorem 1. Under Assumptions 1, 3-5,

τ = E
[
AI{R = 1p}Y

e1(X) − (1 − A)I{R = 1p}Y
e0(X)

]
, (7)

where the denominators in the identification equation

ea(X) = P (A = a,R = 1p | X) = f(A = a,X,R = 1p)∑1
a′=0

f(A=a′,X,R=1p)
P (R=1p|A=a′,X)

, (a = 0, 1) (8)

are identified by (3).

See the proof in the Supplementary material S.3. Theorem 1 employs the functional
ξra to recover the joint propensity score ea(X) for complete-case analysis. This approach
motivates considering an alternative integral equation. Specifically, the causal effect can
be identified using a nonparametric observed-data conditional average treatment effect
(OBCATE) estimation based on an alternative set of integral equations. Before discussing
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the details of this plug-in approach, define

fra(X) := f(X | A = a,R = r) (a = 0, 1; r ∈ R) (9)

as the possible unobserved density of confounders on the treatment and missing indicator
and, importantly, serves as the intermediate link between the observed values and the
complete-case distribution.

Lemma 1. Under Assumptions 3 and 4, for any r and a, the following integral equation
holds:

f(Xr, Y | A = a,R = r) =
∫
fra(X)f(Y | A = a,X,R = 1p) dν(Xr̄). (10)

See the proof in the Supplementary material S.3. Lemma 1 is the basis of our regression
model. f(Xr, Y | A = a,R = r) and f(Y | A = a,X,R = 1p) are identifiable from
the observed data. We have thus turned the identification of fra(X) to the problem of
solving an alternative integral equation. The uniqueness of the solution again relies on the
completeness.

Assumption 5′. The conditional marginal distribution f(Y | A = a,X,R = 1p) is com-
plete in Y , for a = 0, 1.

The two completeness assumptions 5 and 5′ are in fact equivalent when f(A = a,X,R =
1p) > 0 for any a. This equivalence, by Bayes’ rule, is particularly clear in the illustrative
case of discrete confounders (see Supplementary material). Moreover, Assumption 5 implies
Assumption 2. See its proof by Remark 1 in Yang et al. (2019).

With Assumptions 3 and 5, the following theorem guarantees the uniqueness of the
functional fra(X). Although recovering the full distribution is unnecessary to identify the
causal effect, we can still do so since the causal effect is a functional of that distribution.

Lemma 2. Under Assumptions 3 and 5, for any r and a, there is a unique solution fra(X)
to equation (10) and the distribution of (A,X, Y,R) is identifiable.

See the proof in the Supplementary material S.3. If the joint distribution of (A,X, Y ) is
identifiable, a standard argument shows that τ is identifiable under Assumptions 1 and 2.
Nevertheless, we provide explicit identification formulas for τ , which serve as the foundation
for constructing the nonparametric OBCATE estimator. We define

τ(A,XR, R) =
∫
τ(X)f(XR̄ | A,XR, R) dν(XR̄).
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We also define µa(A,XR, R) :=
∫
E(Y | A = a,X)f(XR̄ | A,XR, R) dν(XR̄) whose identi-

fication strategy is identical. Our goal is to identify τ(A,XR, R) = E[τ(X) | A,XR, R] =
E[µ1(X)−µ0(X) | A,XR, R] since these quantities depend only on observed variables. The
primary objective is to determine the causal effect using OBCATE.

Theorem 2. Under Assumptions 1, 3, and 5, τ is identified by

τ = E[τ(A,XR, R)], (11)

where

τ(A = a,Xr, R = r) =
∫ τ(X) fra(X)
f(Xr | A = a,R = r) dν(Xr̄) (12)

identified by (10).

See the proof in the Supplementary material S.3.

3.2.3 Alternative identification formula: completeness in X

The previous set of integral equations relies on the completeness assumption in Y . A
discrete example illustrates that the dimension of Y should exceed that of X. However,
when X is high-dimensional, completeness in Y is likely to fail, raising the question of
whether the unknown parameters can still be recovered in such a scenario. More concretely,
if completeness holds in X, can we still identify, for example, the probability of a given
missing-data pattern r, P(R = r | A = a,X)? In this section, we demonstrate that such
identification is indeed possible with extra assumptions that the following integral equation
is well-identified.

Assumption 6. For any a ∈ {0, 1}, there exists a strictly positive square-integrable func-
tion ϕa such that, almost surely,

∫
ϕa(Y ) f(Y | A = a,X,R = 1p) dν(Y ) = 1

P (R = 1p | A = a,X) . (13)

Two key observations arise from equation (13). First, the conditional distribution f(Y |
A = a,X,R = 1p) is observed, whereas the inverse probability of the missingness pattern,
P (R = 1p | A = a,X)−1, is unobserved. Second, we propose a function ϕa(Y ) that
characterizes the relationship between these two quantities at different values of the support
ofX; these functions are not necessarily densities and therefore may not exist. Identification
of ϕa(Y ) enables recovery of the unobserved density of missing data. We focus on the case
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when r = 1p as P(R = 1p | A = a,X) is sufficient for identifying the causal parameter of
interest. Notice,

f(A = a, Y ) =
∫ 1
P (R = 1p | A = a,X) f(A = a,X, Y,R = 1p) dν(X)

=
∫ [∫

ϕa(Ỹ ) f(Ỹ | A = a,X,R = 1p) dν(Ỹ )
]
f(A = a,X, Y,R = 1p) dν(X)

=
∫
ϕa(Ỹ )

 ∫ f(Ỹ | A = a,X,R = 1p) f(A = a,X, Y,R = 1p) dν(X)
 dν(Ỹ ).

(14)

The first equality holds by definition and the outcome-independent missingness assumption.
The second equality follows from equation (13). The third equality arises by interchanging
the order of integration. We make the following assumption to identify ϕa.

Assumption 7. For each a ∈ {0, 1}, the marginal distribution f(Y | A = a,X,R = 1p) is
complete in X.

First, note Assumption 7 implies that the joint distribution f(A = a, X, Y, R = 1p)
is complete in X (see the Supplementary material for the proof). Second, this assumption
on the low-dimensional structure allow us to identify the conditional probability P (R =
1p | A = a,X) by implying that

∫
f(Ỹ | A = a,X,R = 1p) f(A = a,X, Y,R = 1p) dν(X)

is complete in Y . One implicit part (see the proof in the Supplementary material S.8.3)
about this identification is that we need to show for any a ∈ {0, 1} we have the property
Im(Θa1) ∩ ker(Θa2) = {0}, where Θa1 : L1(Y ) → L1(X) and Θa2 : L1(X) → L1(Y )

(Θa1g)(X) :=
∫
g(Y ) f(Y | A = a,X,R = 1p) dν(Y ),

(Θa2u)(Y ) :=
∫
u(X) f(A = a,X, Y,R = 1p) dν(X).

Consequently, applying equation (7) identifies the ATE. The following theorem formalizes
this argument.

Theorem 3. Under Assumptions 6 and 7, the missing data mechanism P (R = 1p | A =
a,X) is identified.

See the proof in the Supplementary material S.5. The assumptions and identification
formulas are fairly abstract, so to build intuition we present discrete examples that illustrate
how different identification strategies depend on the relative dimensions of Y and X. For
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the continuous case of Assumption 6, we provide sufficient conditions showing that a series
estimator for ϕa is adequate when P (R = r | A = a,X) follows a logistic specification under
mild regularity conditions. The central idea is that the model admits a low-dimensional
structure: variation in the lower-dimensional component Y is enough to capture all of the
relevant variation required for identification.

3.2.4 Sufficient conditions for Assumption 6

We propose a sufficient condition for the existence of a low-dimensional structure in data,
akin to the completeness assumption in statistical theory. Our central premise is that
the observed data exhibit sufficient variation to infer the limited variation present in the
missing data pattern.

Proposition 1. Suppose that for fixed a and r, the conditional distribution of Y | A =
a,X,R = r is a regular exponential family with density f(Y | A = a,X,R = r) =
exp{ ηr(X)⊤g(Y ) − ψ

(
ηr(X)

)
} h(Y ), and that the missingness mechanism is multino-

mial logit πr(X) := P (R = r | A = a,X) = exp(β⊤
r X)/∑r′ exp(β⊤

r′X), where X can
include a constant coordinate. Suppose there exist vectors {tr′r}r′ and positive constants
{cr′r}r′ such that for all r′, ψ

(
ηr(X) − tr′r

)
− ψ

(
ηr(X)

)
= (βr′ − βr)⊤X + log cr′r. Then

the function ϕra(Y ) = ∑
r′ c−1

r′r exp
{

− t⊤r′rg(Y )
}

satisfies Assumption 6.

See the proof in the Supplementary material S.5.

Remark 7. When R ∈ {0, 1} and π1(X) = 1/[1 + exp(β⊤X)], 1/π1(X) reduces to 1 +
exp(β⊤X). Proposition 1 holds with a constant t that generates exp(β⊤X) by ψ(η−t)−ψ(η).
In a gaussian exponential family with Y | X ∼ N (µ0 +MX,Σ), one explicit choice is

ϕa(Y ) = 1 + exp(−t⊤Y − 1
2t

⊤Σt), with M⊤t = β,

which gives E[ϕa(Y ) | X] = 1 + exp(−β⊤X) = 1/π1(X).

4 Estimation

In this section, we present two foundational plug-in estimators and, building on these,
introduce two doubly robust approaches: one based on a straightforward plug-in strategy
and the other leveraging double machine learning. Details on the estimation of the nuisance
parameters are provided in S.10.
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4.1 Doubly robust estimator

Our proposed doubly robust approach is not tied to a single identification strategy. It is
useful to consider two semiparametric models that impose parametric structure on different
parts of the observed data likelihood while leaving the rest unrestricted. In the first model,
MY , we assume that Assumptions 1, 3, and 5 hold, so that identification is achieved
through completeness in Y as in equation (10). In the second model, MX , we instead
assume that Assumptions 1, 3, 6, and 7 hold, so that identification relies on completeness
in X as captured by equation (13) and the alternative representation in (14).

The second set of integral equations motivates an estimator of the joint propensity
score that builds on completeness in X.4 Specifically, starting from equation (13), we can
estimate the conditional density f(Y | A = a,X,R = 1p) using kernel or series-based
methods, and then construct an estimator for ϕa(Y ) via a nonparametric instrumental
variables procedure that exploits the moment restriction in (13). Given these building
blocks, the joint density f(A = a,X, Y,R = 1p) can be approximated empirically, and the
outer integration over Ỹ in (14) is carried out numerically. Combining these steps yields
an estimator of the joint propensity score êa(X) that justifies the identification Theorem
1.

To derive the estimator of OBCATE by equation (12), precisely, µa(A,XR, R) =
∫
E(Y |

A = a,X)f(XR̄ | A,XR, R) dν(XR̄), we estimate E(Y | A = a,X) = E(Y | A = a,X,R =
1p) by complete-case regression, estimate P (A = a | R = r) empirically and f(Xr | R = r)
nonparametrically, and apply the two-stage least squares procedure to recover fra(X) by
the alternative integration formula (10). We therefore yield µ̂a(A,XR, R). There are some
technical details for the nonparametric two-stage least squares procedures, and we discuss
these details of the nonparametric two-stage least squares procedures for estimating ξra

and fra in the Supplementary material.
Then, based on the identification strategies in Theorem 2 and Theorem 3, there are two

natural weighted estimators for the ATE. The first is the inverse joint propensity weighting
(IJPW) estimator:

τ̂IJPW = 1
n

n∑
i=1

[
Ai I{Ri = 1p}Yi

ê1(Xi)
− (1 − Ai) I{Ri = 1p}Yi

ê0(Xi)

]
. (15)

The second is a marginalized regression (MREG) estimator, which depends on the regres-
4Alternatively, one may invoke equation (3), apply a nonparametric two-stage least squares procedure

to estimate P (R = 1p | A = a,X) (equivalently ξra(X)), and then substitute into Bayes’ theorem to derive
an estimator êa(X).
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sion of potential outcomes τ̂(X) and imputed weight f̂(XR̄ | A,XR, R):

τ̂MREG = 1
n

n∑
i=1

[µ̂1(Ai, XRi
, Ri) − µ̂0(Ai, XRi

, Ri)] . (16)

For µ̂a(A,XR, R) and êa(X) for a = 0, 1 that are consistent, under weak conditions, both
τ̂IJPW and τ̂MREG are themselves consistent estimators of the ATE.

The convergence rates of the two estimators in (15) and (16) typically depend on the
accuracy of the intermediate estimators for the joint propensity score and the marginalized
outcome regression. Importantly, they are also influenced by the quality of the estimated
solution to the integral identification functions. Given that the average treatment effect
can be estimated through both inverse joint propensity weighting and marginalized out-
come regression, we propose the augmented inverse joint propensity weighting (AIJPW)
estimator:

τ̂AIJPW = 1
n

n∑
i=1

µ̂1(Ai, XRi
, Ri) + Ai I{Ri = 1p} [Yi − µ̂1(Ai, XRi

, Ri)]
ê1(Xi)

− µ̂0(Ai, XRi
, Ri) − (1 − Ai) I{Ri = 1p} [Yi − µ̂0(Ai, XRi

, Ri)]
ê0(Xi)

. (17)

We also propose the double machine learning (DML) estimator using cross-fitting by Cher-
nozhukov et al. (2018):

τ̂DML = 1
n

n∑
i=1

µ̂[−k(i)]
1

(
Ai, XRi

, Ri

)
+
Ai I{Ri = 1p}

[
Yi − µ̂

[−k(i)]
1 (Ai, XRi

, Ri)
]

ê
[−k(i)]
1 (Xi)

− µ̂
[−k(i)]
0

(
Ai, XRi

, Ri

)
−

(1 − Ai) I{Ri = 1p}
[
Yi − µ̂

[−k(i)]
0 (Ai, XRi

, Ri)
]

ê
[−k(i)]
0 (Xi)

. (18)

We divide the overall sample I into K ≥ 2 disjoint folds, denoted I1, . . . , IK . For each
fold k, we fit the nuisance estimators ê[−k]

a (x) and µ̂[−k]
a (a, xr, r) for a ∈ {0, 1}, using only

the data outside the kth fold. Let k(i) be the index of the fold to which the observation
(Ai, XRi

, Yi, Ri) belongs. That is to say, we use what is commonly called the DML 1
estimator, though an alternative is the DML 2 estimator. Under conditions in which K is
small or the nuisance functions are estimated via auxiliary procedures satisfying standard
regularity conditions, the two estimators typically exhibit similar performance. However, in
more complex settings, DML 2 enjoys superior higher-order properties. Velez (2024) shows
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that, under an asymptotic framework where K → ∞ as n → ∞, DML 2 asymptotically
dominates DML 1 in terms of bias and mean squared error. To simplify the notation in
our discussion of DML, we suppress the fold-index and denote µ̂a(Ai, XRi

, Ri) and êa(Xi)
instead of µ̂[− k(i)]

a (Ai, XRi
, Ri) and ê[− k(i)]

a (Xi), on the understanding that the fold k(i) is
implicitly determined by the observation i.

4.2 Consistency

The classical doubly robust property in the literature requires consistency under a some-
how different condition that at least one of these two nuisance models is correctly specified
by some parametric assumption. Equivalently, one may view the estimation as being con-
ducted over the union model MX ∪ MY . In other words, so long as either the joint
propensity score or the outcome regression model is valid, the estimator still converges to
the true parameter, even if the other working model is misspecified. This feature is also
appealing in practice, since it guards against bias arising from a single model’s misspeci-
fication (Bang and Robins, 2005; Sant’Anna and Zhao, 2020a; Wager, 2024; Testa et al.,
2025). To formalize this for our nonparametric setup, we impose the following condition
for the AIJPW estimator.

Assumption 8. (Consistency of AIJPW) For any a ∈ {0, 1}, and i ∈ [n],
(a) There exists some constant c such that 0 < c ≤ êa(Xi) ≤ 1.
(b) Yi, µa(Ai, XRi

, Ri), and µ̂a(Ai, XRi
, Ri) have bounded second moments.

(c) One of the following conditions (c.1) or (c.2) holds:
(c.1) The nuisance parameter estimator êa(X) satisfies E[êa(Xi) − ea(Xi)]2 = o(1) and

E[ 1
êa(Xi) − 1

ea(Xi) ]
2 = o(1). There exists an estimator µ̄a(A,XR, R) independent of Oi such

that E[µ̂a(Ai, XRi
, Ri) − µ̄(Ai, XRi

, Ri)]2 = o(1).
(c.2) The nuisance parameter estimator µ̂a(Ai, XRi

, Ri) satisfies E[µ̂a(Ai, XRi
, Ri) −

µa(Ai, XRi
, Ri)]2 = o(1). There exists an estimator ēa(Xi) independent of Oi such that

E[ 1
êa(Xi) − 1

ēa(Xi) ]
2 = o(1).

Existing work generally relies solely on a single identification moment condition to
establish the classical doubly robust property (Ding, 2024). In contrast, our paper advances
the framework in two ways: we not only establish doubly robustness under a broader set of
assumptions (nonparametric), but we also prove the consistency of the estimator without
the Donsker. Our key innovation draws on the stronger convergence conditions considered
in Huo et al. (2025), where the authors eliminate the need for a Donsker class argument by
assuming that no individual observation exerts excessive influence on the estimation. Unlike

26



their framework, our approach does not require both nuisance estimators to be consistent
simultaneously. Instead, it suffices that one of them is well-behaved for our result to hold.
We therefore present the following theorem, which formally establishes the classical doubly
robustness of consistency under our assumptions. There is an important remark: in the
classical doubly robust framework, each nuisance model is assumed to converge to some
fixed limit (which may be the true model if correctly specified, or a misspecified target
otherwise). E[µ̂(Ai, XRi

, Ri) − µ̄(Ai, XRi
, Ri)]2 = o(1) and E[ 1

êa(Xi) − 1
ēa(Xi) ]

2 = o(1) play
the same role here.

Theorem 4. Under Assumptions 1–4 and 9, the doubly robust estimator τ̂AIJPW is consis-
tent.

To formalize classical doubly robustness for the DML estimator, we impose the following
condition.

Assumption 9. (Consistency of DML) For any a ∈ {0, 1}, and i ∈ [n],
(a) There exists some constant c such that 0 < c ≤ êa(Xi) ≤ 1.
(b) Yi, µa(Ai, XRi

, Ri), and µ̂a(Ai, XRi
, Ri) have bounded second moments.

(c) One of the following conditions (c.1) or (c.2) holds:
(c.1) The nuisance parameter estimator êa(X) satisfies E

{
[êa(Xi) − ea(Xi)]2 | I−k(i)

}
=

op(1) and E
{
[ 1

êa(Xi) − 1
ea(Xi) ]

2 | I−k(i)
}

= op(1).
(c.2) The nuisance parameter estimator µ̂a(A,XR, R) satisfies E{[µ̂a(Ai, XRi

, Ri) −
µa(Ai, XRi

, Ri)]2 | I−k(i)} = op(1).
(d) There exists some constant κ > 0 such that Ik

n
≥ κ for any k ∈ [K].

As in Chernozhukov et al. (2018), Assumptions 8 and 9 can be readily extended to their
high-probability versions, thereby allowing for estimators with heavy-tailed distributions.
Nevertheless, Our key implication is that, under plug-in or cross-validated estimation, the
AIJPW and DML estimators remain consistent provided that at least one of the nuisance
components is correctly specified. We now formalize the classical doubly robust property
of the DML estimator in the theorem below.

Theorem 5. Under Assumptions 1–4 and 8, the doubly robust estimator τ̂DML is consistent.

5 Inference

5.1 Asymptotic normality

We also establish a rate doubly robust property: the estimator is
√
n consistent requiring

both the joint propensity score and marginalized outcome regression models are consistent.
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The AIJPW estimator begins by modeling conditional outcomes to estimate the ATE.
It then adjusts for potential biases in these models by applying inverse joint probability
weighting to the residuals. This method combines the strengths of marginalized outcome
regression and joint propensity score weighting, offering robustness against misspecification
in either model. Notably, under mild regularity conditions, and even when nuisance param-
eters are estimated flexibly using nonparametric or machine learning methods, the AIJPW
and DML estimators achieve the

√
n-rate of convergence, as demonstrated by Kennedy

(2016); Chernozhukov et al. (2018). This part is well-known in the literature, so we present
the assumptions in a concise manner.

Formally, suppose we estimate the nuisance parameters µa(A,XR, R) and ea(X) by
µ̂a(A,XR, R) and êa(X), respectively, such that the following assumption holds:

Assumption 10. For each a ∈ {0, 1}, there exists some constant c such that 0 < c ≤
êa(Xi) ≤ 1. Yi, µa(Ai, XRi

, Ri), and µ̂a(Ai, XRi
, Ri) have bounded second moments. More-

over, we assume that the estimators µ̂a(A,XR, R) and êa(X) satisfy the following rate
conditions:

(a) ∥µ̂a(A,XR, R) − µa(A,XR, R)∥2 = oP (1).

(b) ∥êa(X) − ea(X)∥2 = oP (1).

(c) ∥µ̂a(A,XR, R) − µa(A,XR, R)∥2 · ∥êa(X) − ea(X)∥2 = oP (n−1/2).

This assumption holds if each nuisance estimator converges at a rate of op(n−1/4) in the
L2(P )-norm, where ∥θ̂∥2

2 =
∫
θ̂(w)2 dP (w).We use the notation op(·) to indicate convergence

in probability, distinguishing it from the deterministic o(·) used in Assumption 8. This
distinction is crucial as we do not explicitly control for the randomness inherent in the
estimators ê and µ̂, which would otherwise make this assumption more stringent. (See
Lemma in the Supplementary material) In classical semiparametric theory, ensuring that
nuisance estimators belong to a Donsker class guarantees that the additional variability
from estimating ê and µ̂ becomes asymptotically negligible. This condition allows for the
use of more flexible methods while still achieving consistency under strong conditions on
the randomness of the estimated nuisance parameters.

Equivalently, one may view the estimation under Assumption 10 as being conducted
over the intersection model MX ∩MY . The rate condition connects the literature on causal
inference with machine learning methods that converge at a slow rate while still producing
asymptotically valid confidence intervals. Then, we introduce the following assumption as
part of the standard procedure for implementing doubly robust estimators.
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Assumption 11. We assume that either (a) µ̂a(A,XR, R) and êa(X) are obtained by fixed
K-fold cross-fitting with K > 1, or (b) µa(A,XR, R), µ̂a(A,XR, R), ea(X), êa(X) belong to
a Donsker class.

This assumption ensures the necessary rate conditions for the doubly robust estimator
to achieve asymptotic normality and efficiency. One can interpret the estimation under
MX ∩ MY . Cross-fitting helps mitigate overfitting and relaxes the need for Donsker class
conditions, as demonstrated by Kennedy (2016); Chernozhukov et al. (2018). Alternatively,
assuming the estimators lie within a Donsker class provides a route to control the empirical
process term in the asymptotic analysis, as discussed by Andrews (1994). One weaker
assumption for the Donsker class is by assuming the asymptotic equicontinuity (van der
Vaart, 2000). Assume that the function class F = Φω satisfies asymptotic equicontinuity
with respect to the L1–norm: for every ε > 0,

lim
δ→0

lim sup
n→∞

P
(

sup
f,g∈Φω

E[ |f−g|]<δ

Gn(f − g) > ε
)

= 0,

where Gn =
√
n (Pn − P). With these assumptions, we now state the following theorem,

which establishes the
√
n-consistency and asymptotic linearity of our doubly robust esti-

mators.

Theorem 6. Under Assumptions 1–4, 10, and 11, the doubly robust estimators τ̂AIJPW and
τ̂DML are asymptotically linear. Let τ̂ denote either τ̂AIJPW or τ̂DML, then

√
n (τ̂ − τ)⇝ N (0, V ) (19)

V = Var [τ(A,XR, R)] + E
[
σ2

1(X)
e1(X)

]
+ E

[
σ2

0(X)
e0(X)

]
(20)

where σ2
a(X) = Var [Yi(a) | X] for a = 0, 1.

See the proof in Supplementary material S.7.1.

Remark 8. In the Appendix we show that

τ̂ = 1
n

n∑
i=1

µ1(Ai, XRi
, Ri) + Ai I{Ri = 1p} [Yi − µ1(Ai, XRi

, Ri)]
e1(Xi)

− µ0(Ai, XRi
, Ri) − (1 − Ai) I{Ri = 1p} [Yi − µ0(Ai, XRi

, Ri)]
e0(Xi)

+ op(n−1/2).
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Thus, up to an op(n−1/2) remainder, an AIJPW estimator is first-order equivalent to a sum
of independent and identically distributed random influence functions. This asymptotically
linear representation immediately justifies constructing confidence intervals and conduct-
ing hypothesis tests either by the usual normal theory approximations or by applying the
bootstrap.

Under the conditions of Theorem 6, let V̂ denote a consistent estimator of V . For
example,

V̂ = 1
n

n∑
i=1

[
τ̂(Ai, XRi

, Ri) − ¯̂τ
]2

+ 1
n

n∑
i=1

Ai I{Ri = 1p}σ̂2
1(Xi)

ê2
1(Xi)

+ 1
n

n∑
i=1

(1 − Ai) I{Ri = 1p}σ̂2
0(Xi)

ê2
0(Xi)

.

Then an asymptotically valid two-sided 1−α confidence interval for τ is
[
τ̂ ± z1−α/2

√
V̂ /n

]
.

it can be shown (with somewhat stronger conditions, typically higher-order moment as-
sumptions on the parameters and estimators) that this confidence interval has uniform
asymptotic validity:

lim
n→∞

sup
P ∈P

∣∣∣∣∣∣P
τ ∈

τ̂ ± z1−α/2

√
V̂

n

− (1 − α)

∣∣∣∣∣∣ = 0.

5.2 Semiparametric efficiency bounds

In this section, we focus on the optimal inference for the OBCATE parameter τ ⋆ :=
E
[
τ(A = a,Xr, R = r)

]
, and under Assumptions 1, 3, and 5, Theorem 2 implies that

τ = τ ⋆. Our aim is to study the functional that achieves the semiparametric efficiency
bound and possesses local efficiency. In the above theorems, we showed that the proposed
estimator is asymptotically linear. The leading linear term, commonly referred to as the
influence function, captures the first-order behavior of the estimator under the stated as-
sumptions. A natural question that arises is whether this influence function is in fact the
efficient influence function, in the sense that no other regular estimator is more efficient
than the current one.5

To address this question, we examine whether the influence function corresponds to the
efficient influence function for τ ⋆ in a nonparametric model, where the full data density is
assumed to be estimable directly from the observed data with structural restrictions. Since

5Traditional local asymptotic minimax theory focuses on regular estimators and excludes superefficient
procedures. Nonetheless, one can formulate versions of the Local Asymptotic Minimax (LAM) theorem
that accommodate superefficient estimators, allowing for a meaningful comparison with regular estimators
such as the maximum likelihood estimator Chamberlain (1992); Le Cam and Yang (1992).
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our identification relies on the completeness conditions, parameters are bounded to ensure
pathwise differentiability, and, it is also worth considering whether the additional structure
from MNAR assumption can be used to sharpen the efficiency bound by restricting the
tangent space. The next theorem formalizes these results.

Theorem 7. Under Assumptions 1-7, the efficient influence function of τ is

φ = µ1(A,XR, R) − µ0(A,XR, R) − τ

+ A I{R = 1p} [Y − µ1(A,XR, R)]
e1(X) − (1 − A) I{R = 1p} [Y − µ0(A,XR, R)]

e0(X)

and the semiparametric efficiency bound for all regular estimators of the model τ ⋆ is

E
[
φ2
]

= Var [τ(A,XR, R)] + E
[
σ2

1(X)
e1(X)

]
+ E

[
σ2

0(X)
e0(X)

]
.

See the proof in the Supplementary material S.11.

6 Simulation

Table 1: Simulation: bias (×10−2) and variance (×10−3) of the point-estimator of τ , vari-
ance estimate (×10−3), and coverage (%) of 95% confidence intervals.

n = 1, 000 n = 3, 000 n = 10, 000
Method Bias Var VE Cvg Bias Var VE Cvg Bias Var VE Cvg
(a) One confounder subject to missingness
NonPara 28.7 90.4 91.1 15.4 % 28.3 48.2 46.0 25.6 % 27.9 22.6 23.4 38.1 %
AIJPW –22.4 46.3 48.0 88.2 % –21.1 23.9 22.2 92.3 % –20.6 11.0 12.2 94.1 %
DML 18.1 37.8 38.6 90.9 % 17.5 18.2 20.1 93.0 % 17.2 8.9 9.8 95.4 %
(b) Multiple confounders subject to missingness
NonPara –116.3 81.5 79.2 <0.1 % –114.8 39.7 36.1 <0.1 % –113.5 20.1 19.3 <0.1 %
AIJPW 10.2 182.0 254.5 70.6 % 9.6 89.5 102.1 80.3 % 9.1 42.3 46.0 90.4 %
DML 8.1 176.4 241.0 75.8 % 7.5 92.2 104.3 85.5 % 7.0 46.8 53.2 91.2 %

Notes: NonPara = nonparametric estimator; AIJPW = augmented inverse joint-propensity weighting
estimator; DML = double machine learning estimator.

In this section, we compare the results from the nonparametric two-stage regression
approach in Yang et al. (2019) with our doubly robust estimators. Our simulation method-
ology builds upon that of Yang et al. (2019). However, unlike their low-dimensional sim-
ulation, our setup introduces a more intricate data generation process for both potential
outcomes and the probability of missingness, incorporating nonlinear terms to better cap-
ture real-world complexities. For the second simulation, while the data generation process
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for the multivariate case remains consistent, we employ nonparametric methods to estimate
the average treatment effect, as opposed to the parametric approaches used in their study.
In each setting, we choose sample sizes of n = 1, 000, 3, 000, and 10, 000, generating 2,000
Monte Carlo samples for each sample size. For all estimators, we use the bootstrap with
200 replicates to estimate the variances.

In the first setup, we generate two confounders X1i ∼ N (1, 1) and X2i ∼ Bernoulli(0.5).
The potential outcomes are defined as

Yi(0) = 0.5 +X1i +X2i + max{X1i, X2i} + ϵ0i,

Yi(1) = 1 + 3X1i + 2X2i + 2 max{X1i, X2i} + ϵ1i,

where ϵ0i, ϵ1i ∼ N (0, 1), resulting in an average causal effect τ = E[Yi(1) − Yi(0)] = 4.25.
Treatment assignment follows Ai ∼ Bernoulli(πi), where logit(πi) = 1.25 − 0.5X1i − 0.5X2i,

and the missingness indicator for X1i, denoted R1i, is generated by R1i ∼ Bernoulli(pi),
logit(pi) = −2 + 2X1i + Ai (1.5 + X2i) + max{X1i, X2i}, which yields an overall response
rate of approximately 77%. We begin to show that the two integral equations are different
in the sense that they return different results for the underlying distributions.

In the second setup, let Xi = (X1i, . . . , X6i). We generate X1i and X2i from N (1, 1),
X3i and X4i from 2Bernoulli(0.5) − 1, X5i = X1i +X2i +X3i +X4i + ϵ5i with ϵ5i ∼ N (0, 1),
and X6i from Bernoulli(p6i) with logit(p6i) = −X5i. The potential outcomes are defined by

Yi(0) = −1.5 +X1i −X2i +X3i −X4i +X5i +X6i + ϵ0i,

Yi(1) = 0 −X1i +X2i −X3i +X4i −X5i −X6i + ϵ1i,

where ϵ0i, ϵ1i ∼ N (0, 1). The average treatment effect is τ = −0.5. The treatment indicator
Ai ∼ Bernoulli(πi), where logit(πi) = 1 + 0.5X1i + 0.5X2i + 0.5X3i + 0.5X4i − X5i − X6i.
Among the confounders, X5i and X6i have missing values, while the other confounders do
not. The missingness pattern for (X5i, X6i) is denoted by Ri = (R5i, R6i), which takes
values in the set {(1, 1), (1, 0), (0, 1), (0, 0)}. The distribution of Ri is multinomial with
probabilities (p11,i, p10,i, p01,i, p00,i). Specifically,

p11,i = 1
1 + 3eLi

and p10,i = p01,i = p00,i = eLi

1 + 3eLi
.

where Li = −1 + 0.25Ai + 0.25X1i + 0.25X2i + 0.25X3i + 0.25X4i − 0.25X5i − 0.25X6i. On
average, the four missing-ness patterns (1, 1), (1, 0), (0, 1) and (0, 0) occur in about 49%,
17%, 17% and 17% of observations, respectively.
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We use 10-fold cross-validation to select the tuning parameters J and B. Table 1(a)
compares our doubly robust estimators with the nonparametric estimator for the case
of a single confounder subject to missingness. The nonparametric method exhibits poor
coverage rates for the confidence intervals. In contrast, our proposed estimators show
negligible bias, maintain good coverage, and display decreasing variance as the sample size
increases. Table 1(b) presents a comparison for the scenario of a single confounder subject
to multiple missingness patterns. Again, our estimators demonstrate negligible bias and
reliable coverage, outperforming the nonparametric approach. Overall, the DML estimator
shows superior performance compared to the AIJPW estimator.

7 Empirical applications

7.1 The causal effect of job training program on employment

Table 2: Point estimate, standard error by the bootstrap and 95% confidence interval

Method Estimation Standard Error 95% Confidence Interval

(a) The causal effect of job training program on employment
TDWC 0.037 0.011 [0.0154, 0.0586]
AIJPW 0.042 0.009 [0.0246, 0.0594]
DML 0.045 0.008 [0.0294, 0.0606]
(b) The causal effect of smoking on blood-lead level
NonPara 0.207 0.072 [0.0660, 0.3480]
AIJPW 0.221 0.063 [0.0966, 0.3454]
DML 0.246 0.052 [0.1440, 0.3480]
(c) The causal effect of education on general health satisfaction
NonPara –0.283 0.094 [–0.4685, –0.0975]
AIJPW –0.341 0.046 [–0.4321, –0.2499]
DML –0.356 0.041 [–0.4376, –0.2744]

Notes: TDWC = treatment dummy without control; NonPara = nonparametric estimator; AIJPW =
augmented inverse joint-propensity weighting estimator; DML = double machine learning estimator.

We analyze data from the 1994–1995 National Job Corps Study, a randomized job-training
program evaluated in Lee (2009). The analytic sample consists of 9,145 individuals, in-
cluding treated participants (A = 1) and controls (A = 0). The set of confounders X
includes age, an indicator for ever being arrested, gender, race/ethnicity, marital status,
number of children, education, mother’s education (16.4% missing), father’s education
(33.5% missing), household income (31.9% missing), and personal income categories; all
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other confounders are nearly fully observed. The outcome Y is employment status dur-
ing the follow-up period. The substantial non-response in parental education and income
suggests that missingness may depend on the unobserved values themselves (for example,
higher-educated parents or higher-income households may be less likely to report). At the
same time, it is plausible that, conditional on treatment assignment and the observed con-
founders, the missingness mechanism is independent of subsequent employment outcomes,
a form of outcome-independent missingness.

7.2 The causal effect of smoking on blood lead level

We analyze data from the 2015–2016 National Health and Nutrition Examination Survey
to estimate the causal effect of smoking on blood-lead level. The analytic sample includes
2,949 adults, of whom 1,102 are smokers (A = 1) and 1,847 are non-smokers (A = 0). All
participants are aged 15 or older and reported no tobacco use other than cigarette smoking
in the preceding five days. The outcome Y is the blood-lead concentration (ranging from
0.05 to 23.51 µg/dL). Confounders X include the income-to-poverty ratio, age, and gender;
only the income-to-poverty ratio has missing values (14.0 % for smokers and 15.2 % for
non-smokers). While the missingness of income may be not at random (for example, higher-
income individuals may be less likely to report), it is also plausible that, conditional on
smoking status and the observed confounders, the missing-data process is independent
of the blood-lead outcome that is consistent with an outcome-independent missingness
assumption.

7.3 The causal effect of education on general health satisfaction

We analyze data from the 2015–2016 National Health and Nutrition Examination Survey
to estimate the average causal effect of education on general health satisfaction. The
analytic sample comprises 4,845 individuals, of whom 76 % completed at least high-school
education (A = 1) while the remaining 24 % did not (A = 0). The outcome Y is a general
health-satisfaction score on a 1-5 scale (lower values indicate better satisfaction); in the
observed data the mean of Y is 2.88 with standard deviation 0.96. Confounders X include
age, gender, race, marital status, the income-to-poverty ratio, and an indicator of ever
having pre-diabetes risk. Among these, the income-to-poverty ratio and the pre-diabetes-
risk indicator contain missing values; all other confounders are fully observed. We believe
the missingness for these two variables may depend on their unobserved values. However, it
is plausible that, conditional on the treatment and observed confounders, the missingness
is independent of the outcome.
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7.4 Results

Table 2 panel (a) presents the estimated effect of the job training program on employment.
All three estimators indicate a positive impact: the treatment dummy without control
(nonparametric estimate is not applicable with a binary outcome), which is a benchmark
result in this randomized experiment, is 0.0370 (SE = 0.0110; 95% CI [0.0154, 0.0586]), the
AIJPW estimator is 0.0420 (SE = 0.0090; 95% CI [0.0246, 0.0594]), and the DML estimator
yields 0.0450 (SE = 0.0080; 95% CI [0.0294, 0.0606]). In panel (b), the nonparametric
estimate is 0.2070 (SE = 0.0720; 95% CI [0.0660, 0.3480]), the AIJPW estimate is 0.2210
(SE = 0.0630; 95% CI [0.0966, 0.3454]), and the DML estimate is 0.2460 (SE = 0.0520;
95% CI [0.1440, 0.3480]). In panel (c), the nonparametric estimate is –0.2830 (SE =
0.0940; 95% CI [–0.4685, –0.0975]), the AIJPW estimate is –0.3410 (SE = 0.0460; 95%
CI [–0.4321, –0.2499]) and the DML estimate is –0.3560 (SE = 0.0410; 95% CI [–0.4376,
–0.2744]). Across all applications, the more advanced estimators produce larger (in absolute
value) effects and yield tighter confidence intervals, suggesting that accounting for high-
dimensional confounders and missing confounders can meaningfully improve both precision
and inference.

8 Conclusion

We contribute to the causal inference literature by providing a robust and efficient method
for settings with MNAR data, thereby enhancing the reliability of treatment effect estimates
in the presence of missing confounders. We address the challenges of causal inference
in observational studies where confounders are MNAR. We introduced a semiparametric
framework that derives the efficiency bound for estimating ATE under the assumption of
outcome-independent missingness. Our proposed doubly robust estimator, which solves
two Fredholm integral equations—one integrating over confounders and the other over
outcomes with an unknown low-rank structure, attains this efficiency bound.

The estimator exhibits robustness in two respects: it remains consistent when either the
confounder or the outcome has greater dimensionality, provided other necessary assump-
tions are satisfied. Additionally, by leveraging fourth-root rate convergence for nuisance
parameters, the estimator achieves

√
n-consistency, asymptotic linearity, and local effi-

ciency. Simulation studies demonstrate the estimator’s superior finite-sample performance
compared to existing methods. An application to the 2015–2016 U.S. National Health and
Nutrition Examination Survey illustrates its practical utility in real-world data analysis.

This article also opens several promising avenues for future work. A natural extension is
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to derive a Bayesian analog of our doubly robust estimator under the outcome-independent
MNAR assumption. One could place priors on the nuisance functions (e.g. the missing-
ness mechanism, conditional densities, regression models) and then incorporate influence-
function or bias-correction adjustments in the posterior for the average treatment effect,
thereby combining Bayesian uncertainty quantification with semiparametric efficiency and
robustness (e.g. as in Breunig et al. (2025)).

Another key direction is to study the finite-sample performance of our estimator be-
yond the asymptotic regime. Although our theoretical guarantees ensure

√
n-consistency,

asymptotic linearity, and local efficiency under fourth-root convergence of nuisance esti-
mates, real-world sample sizes may strain these conditions. Inspired by methods such as
those in Armstrong and Kolesár (2021), one could develop bias-aware confidence sets or
“honest” inference procedures that maintain nominal coverage even when integral opera-
tor inversions approach ill-posedness. Further research is also needed to refine practical
estimation of nuisance parameters that involve convolution or integral operators in finite
samples.
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S Supplementary material

S.1 Alternative missing data mechanisms

Several assumptions have been proposed to address scenarios involving missing confounders.
In this subsection we will discuss these assumptions which do not adequately handle com-
plex missing data patterns, such as those illustrated in Figure 1. For a concrete discussion,
see Yang et al. (2019).

To address the missing confounders, Rosenbaum and Rubin (1984) introduced a modi-
fied unconfoundedness assumption.

Assumption S1. {Y (0), Y (1)} ⊥⊥ A | (Xr, R).

Under Assumption S1, the generalized propensity score e(Xr, R) = P(A = 1 | Xr, R)
plays the same role as the classical score e(X) = P (A = 1 | X) when confounders are fully
observed. Adjusting for e(Xr, R) balances both the observed values and missingness pattern
without modeling the missing-data mechanism. However, when R = 0p indicating that all
confounders are missing, it is unlikely that the treatment assignment A is independent of
the outcome Y , as no observed confounders are available to adjust for potential biases. In
such scenarios, the assumption of no unmeasured confounding may be violated, leading to
biased estimates of treatment effects.

By considering missing mechanisms, the causal effects can be identified in different
ways. The first mechanism is missing completely at random (Rubin, 1976).

Assumption S2. (Missing completely at random) R ⊥⊥ (A,X, Y ).

Assumption S2 requires that the missingness of confounders is independent of all vari-
ables (A,X, Y ). It implies τ = E[τ(X) | R = 1p] and thus justifies the complete-case
analysis that uses only the units with fully observed confounders. However, confounders
are rarely missing completely at random and missing at random (Rubin, 1976) deals with
that consideration.

Assumption S3. (Missing at random) R ⊥⊥ X | (A, Y ).

Under Assumption S3, conditioning on the treatment A and outcome Y , the missingness
mechanism of the confounders X is independent of the missing values themselves. This
assumption implies that the joint distribution factorizes as f(A,X, Y ) = f(A, Y )f(X |
A, Y,R = 1p). Consequently, the joint distribution and its functionals, including the av-
erage treatment effect τ , are identifiable. However, the assumption of missing at random
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is untenable when the probability of missingness depends on the unobserved values them-
selves. In such cases, the data necessitate alternative modeling approaches to account for
the non-ignorable missingness mechanism.

S.2 Main proofs for identification

S.2.1 Identification in Yang et al. (2019)

In this subsection, Lemma S1 constructs the integral equation; Lemma S2 recovers the full
data distribution; and Theorem 3 estimates the average treatment effect.

Lemma S1. Under Assumption 3, for any r and a, the following integral equation holds:

f(A = a,Xr, Y, R = r) =
∫
ξra(X)f(A = a,X, Y,R = 1p) dν(Xr̄).

Proof. The conclusion follows because the observed data distribution is the complete data
distribution averaged over the missing data

f(A = a,Xr, Y, R = r) =
∫
f(A = a,X, Y,R = r)dν(Xr)

=
∫ f(A = a,X, Y,R = r)
f(A = a,X, Y,R = 1p)f(A = a,X, Y,R = 1p)dν(Xr̄)

=
∫ P (R = r | A = a,X, Y )
P (R = 1p | A = a,X, Y )f(A = a,X, Y,R = 1p)dν(Xr̄)

=
∫
ξra(X)f(A = a,X, Y,R = 1p)dν(Xr).

Lemma S2. Under Assumptions 3-5, the distribution of (A,X, Y,R) is identifiable.

Proof. Suppose that ξ(1)
ra (X) and ξ(2)

ra (X) are two solutions to the integral equation

f(A = a, Xr, Y, R = r) =
∫
ξra(X) f(A = a, X, Y, R = 1p) dν(Xr) (k = 1, 2).

Then their difference must satisfy
∫ [
ξ(1)

ra (X) − ξ(2)
ra (X)

]
f(A = a, X, Y, R = 1p) dν(Xr) = 0.

Integrating both sides further over Xr, we get
∫ [
ξ(1)

ra (X) − ξ(2)
ra (X)

]
f(A = a, X, Y, R = 1p) dν(X) = 0.
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Then by Definition 1 and Assumption 5, we conclude that

ξ(1)
ra (X) − ξ(2)

ra (X) = 0 a.s.

Thus the integral equation (3) admits a unique solution ξra(X). Next, from the definition
of ξra(X), we can identify

P (R = r | A,X, Y ).

by ∑r P (R = r | A,X, Y ) = 1. Finally, we recover

f(A,X, Y ) = f(A,X, Y, R = 1p)
P (R = 1p | A,X, Y ) ,

f(A,X, Y,R) = f(R | A,X, Y )P (A,X, Y ).

by equation (1).

Theorem S1. Under Assumptions 1, 3-5, the average causal effect τ is identified by

τ =
1∑

a=0

∫
τ(X)

f
(
A = a,X,R = 1p

)
P
(
R = 1p | A = a,X

) dν(X), (S1)

Here τ(x) is identified by (5), P (A = a, R = 1p) and f(A = a,X,R = 1p) depend only on
the observed data, and P (R = 1p | A = a,X) can be identified from Lemma S2 for a = 0, 1.

Proof. First, we can identify the conditional distribution of X given A = a by

f(X | A = a) =
f
(
A = a, X, R = 1p

)
P
(
R = 1p | A = a, X

) , (a = 0, 1).

Averaging τ(X) over this distribution yields the identification formula (S1).

S.3 First set of identification formulas

Proof of Theorem 1. We first show that (7) holds. Notice

E
[

AI{R = 1p}Y
P (A = 1, R = 1p | X)

]
= E

{
E
[

AI{R = 1p}Y
P (A = 1, R = 1p | X) | A,X

]}

= E
[

A

P (A = 1, R = 1p | X)E (I{R = 1p}Y | A,X)
]
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by the law of iterated expectations. The denominator is well defined because of Assump-
tions 2 and 4. We can further simplify the expectation by

E
[

A

P (A = 1, R = 1p | X)E(I{R = 1p} | A,X)E (Y | A,X)
]

with the outcome-independent missingness of Assumption 3. This equals to

E
[
AP (R = 1p | A,X)
P (A = 1, R = 1p | X)E (Y | A,X)

]
= E

[
AP (R = 1p | A = 1, X)
P (A = 1, R = 1p | X) E (Y | A = 1, X)

]

= E
[

A

P (A = 1 | X)E (Y | A = 1, X)
]

= E[Y (1)]

because the random variable A governs the value of the random variable within the expec-
tation. The third equality follows from Assumption 1, which relies on the classical rationale
underlying propensity score weighting. Similarly, we can obtain

E
[

(1 − A)I{R = 1p}Y
P (A = 0, R = 1p | X)

]
= E [Y (0)]

and thus, we finish the first part of the proof.
Second, we can identify the expectation on the right hand of (7) by

P (A = a,R = 1p | X) = f(A = a,X,R = 1p)
f(X) ,

= f(A = a,X,R = 1p)∑1
a′=0

f(A=a′,X,R=1p)
P (R=1p|A=a′,X)

(a = 0, 1),

where f(A = a,X,R = 1p) is identifiable from the observed data and P(R = 1p | A =
a,X) is identified by the functional ξra. Moreover, the indicator function I{R = 1p}
ensures the nonnegative part in the expectation with observed density, so the expectation
is identified.
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Proof of Lemma 1. The integral equation equals to

f(Xr, Y | A = a,R = r) =
∫
f(X, Y | A = a,R = r) dν(Xr̄)

=
∫
f(X | A = a,R = r)f(Y | A = a,X,R = r) dν(Xr̄)

=
∫
f(X | A = a,R = r)f(Y | A = a,X,R = 1p) dν(Xr̄)

To ensure all of these conditional densities and integrals are well-defined, we require As-
sumption 4 for:

f(· | A = a,R = r) = f(·, R = r | A = a)
P (R = r | A = a)

so the denominator is strictly positive.

Proof of Lemma 2. Suppose that f (1)
ra (X) and f (2)

ra (X) are two solutions to the integral
equation

f(Xr, Y | A = a,R = r) =
∫
fra(X)f(Y | A = a,X,R = 1p) dν(Xr̄),

which implies
∫
[f (1)

ra (X) − f (2)
ra (X)]f(Y | A = a,X,R = 1p) dν(Xr̄) = 0. Integrating both

sides with respect to Xr, we obtain
∫

[f (1)
ra (X) − f (2)

ra (X)]f(Y | A = a,X,R = 1p) dν(X) = 0.

Under Assumption 5′, completeness implies that f (1)
ra (X) = f (2)

ra (X) almost surely. There-
fore, Equation (10) has a unique solution fra(X).

For the other part of the theorem, note that the left-hand side of f(X | A = a,R =
r)f(A = a,R = r) = f(A = a,X,R = r) is identifiable, and so is the right-hand side.
Therefore, the conditional distribution f(R = r | X,A = a) is identifiable, and conse-
quently, the functional ξra is also identified. As a result, the distribution of the full data is
identified.

Proof of Theorem 2. τ = E[τ(A,XR, R)] = E {E[τ(X) | A,XR, R]} is straightforward once
we identify τ(A,XR, R). We are able to derive the ATE because the random variable
τ(A,XR, R) is an identified function of observed random variables (A,XR, R). We focus
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on
∫ τ(X) fra(X)
f(Xr | A = a,R = r) dν(Xr̄) =

∫ τ(X) f(X | A = a,R = r)
f(Xr | A = a,R = r) dν(Xr̄)

=
∫
τ(X) f(Xr̄ | A = a,Xr, R = r) dν(Xr̄)

= τ(A = a,Xr, R = r).

By Assumptions 1 and 3, we have τ(X) = E
(
Y | A = 1, X, R = 1p

)
−E

(
Y | A = 0, X, R =

1p

)
identified. Moreover, the confounder mask mechanism f

(
Xr | A = a,R = r

)
is from

the fully observed distribution. By Theorem 1, each fra(X) is identified, and substituting
these into the representation (12) shows that τ(A,XR, R) itself is identified. An implicit
assumption is that f(Xr | A = a,R = r) is well defined. This well-definedness follows
immediately from Assumptions 3 and 5.

S.4 Second set of identification formulas

Proof of Theorem 3. Define the product kernel

Ha(Y, Ỹ ) :=
∫
f(Ỹ | A = a,X,R = 1p) f(A = a,X, Y,R = 1p) dν(X).

Let g be a bounded measurable function on Y and suppose
∫
g(Ỹ )Ha(Y, Ỹ ) dν(Ỹ ) = 0.

Then, by Fubini,

0 =
∫ [ ∫

g(Ỹ ) f(Ỹ | A = a,X,R = 1p) dν(Ỹ )
]
f(A = a,X, Y,R = 1p) dν(X) = (Θa2u)(Y ),

where u(X) := (Θa1g)(X) =
∫
g(Ỹ ) f(Ỹ | A = a,X,R = 1p) dν(Ỹ ) for X ∈ Sk.

Thus Θa2u = 0 with u ∈ Im(Θa1). By Im(Θa1) ∩ ker(Θa2) = 0, u = 0 almost surely.
Hence, ∫

g(Ỹ ) f(Ỹ | A = a,X,R = 1p) dν(Ỹ ) = 0.

By Assumption 7 (completeness in X of f(Ỹ | A = a,X,R = 1p)), this implies g = 0
almost surely. Therefore Ha is complete in Y .

Consequently, the link function ϕa(Y ) solving (13) is unique, and hence P(R = 1p | A =
a,X) is identified.
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S.5 Sufficient condition for the low-dimensional structure assumption

Proof of Proposition 1. By the density assumption on f(Y | A = a,X,R = r), we observe

E
[
exp{−t⊤g(Y )}

∣∣∣∣A = a,X,R = r
]

=
∫

exp{−t⊤g(Y )}f(Y | A = a,X,R = r)dν(Y )

=
∫

exp{−t⊤g(Y )} exp{ηr(X)⊤g(Y ) − ψ
(
ηr(X)

)
}h(Y )dν(Y )

= exp{−ψ
(
ηr(X)

)
}
∫

exp{(ηr(X) − t)⊤g(Y )}h(Y )dν(Y )

= exp{ψ
(
ηr(X) − t

)
− ψ

(
ηr(X)

)
}.

The fourth equality follows from the fact that the integral of the density equals 1. By
assumption, for each r′, ψ

(
ηr(X) − tr′r

)
− ψ

(
ηr(X)

)
= (βr′ − βr)⊤X + log cr′r. Hence

E
[

exp{−t⊤r′rg(Y )} | A = a,X,R = r
]

= cr′r exp{(βr′ − βr)⊤X}.

Then

E[ϕra(Y ) | A = a,X,R = r] =
∑
r′
c−1

r′rE
[

exp{−t⊤r′rg(Y )} | A = a,X,R = r
]

=
∑
r′

exp{(βr′ − βr)⊤X} = 1
πr(X) .

S.6 Main proofs for the doubly robustness

S.6.1 Proof of Theorem 4

Proof. Conditions (a) and (b) in Assumption 9 ensure the applicability of weak law of large
numbers. We omit the formal proof of this result in the main argument. Our goal is the
classical doubly robustness of

τ̂AIJPW = 1
n

n∑
i=1

µ̂1(Ai, XRi
, Ri) − µ̂0(Ai, XRi

, Ri)

+ Ai I{Ri = 1p} [Yi − µ̂1(Ai, XRi
, Ri)]

ê1(Xi)
− (1 − Ai) I{Ri = 1p} [Yi − µ̂0(Ai, XRi

Ri)]
ê0(Xi)


(1) We want to show that τ̂AIJPW is consistent if E [|µ̂a(A,XR, R) − µa(A,XR, R)|2] = o(1)
holds.
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We focus on

S1 := 1
n

n∑
i=1

µ̂1(Ai, XRi
, Ri) + Ai I{Ri = 1p} [Yi − µ̂1(Ai, XRi

, Ri)]
ê1(Xi)

− µ1

= 1
n

n∑
i=1

µ̂1(Ai, XRi
, Ri) − E [µ(Ai, XRi

, Ri)] + Ai I{Ri = 1p} [Yi − µ̂1(Ai, XRi
, Ri)]

ê1(Xi)


= 1
n

n∑
i=1

{µ(Ai, XRi
, Ri) − E [µ(Ai, XRi

, Ri)]} + 1
n

n∑
i=1

Ai I{Ri = 1p} [Yi − µ1(Ai, XRi
, Ri)]

ê1(Xi)

+ 1
n

n∑
i=1

[µ̂(Ai, XRi
, Ri) − µ(Ai, XRi

, Ri)][1 − Ai I{Ri = 1p}
ê1(Xi)

]

=I1 + I2 + I3.

where

I1 := 1
n

n∑
i=1

{µ(Ai, XRi
, Ri) − E [µ(Ai, XRi

, Ri)]} ,

I2 := 1
n

n∑
i=1

Ai I{Ri = 1p} [Yi − µ1(Ai, XRi
, Ri)]

ê1(Xi)
,

I3 := 1
n

n∑
i=1

[µ̂(Ai, XRi
, Ri) − µ(Ai, XRi

, Ri)][1 − Ai I{Ri = 1p}
ê1(Xi)

].

And the second equality is by definition and the law of iterated expectation that E [µ(Ai = a,XRi
, Ri)] =

E[Y (a)]. Therefore, by triangle inequality, we find that

|S1| ≤ |I1| + |I2| + |I3|.

Since the second moment is bounded, by the law of large numbers we have |I1|
p−→ 0. We

also find that

|I2| ≤
∣∣∣∣∣ 1n

n∑
i=1

Ai I{Ri = 1p} [Yi − µ1(Ai, XRi
, Ri)]

e1(Xi)

∣∣∣∣∣
+
∣∣∣∣∣ 1n

n∑
i=1

Ai I{Ri = 1p} [Yi − µ1(Ai, XRi
, Ri)][

1
ê1(Xi)

− 1
e1(Xi)

]
∣∣∣∣∣

p−→
∣∣∣∣∣ 1n

n∑
i=1

Ai I{Ri = 1p} [Yi − µ1(Ai, XRi
, Ri)][

1
ê1(Xi)

− 1
e1(Xi)

]
∣∣∣∣∣

where the first inequality follows from the triangle inequality. The second equality follows
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from the law of large numbers and Lemma S11. Now, let’s examine∣∣∣∣∣ 1n
n∑

i=1
Ai I{Ri = 1p} [Yi − µ1(Ai, XRi

, Ri)][
1

ê1(Xi)
− 1
e1(Xi)

]
∣∣∣∣∣

=
∣∣∣∣∣ 1n

n∑
i=1

Ai I{Ri = 1p} [Yi − µ1(Ai, XRi
, Ri)][

1
ê1(Xi)

− 1
ē1(Xi)

+ 1
ē1(Xi)

− 1
e1(Xi)

]
∣∣∣∣∣

≤
∣∣∣∣∣ 1n

n∑
i=1

Ai I{Ri = 1p} [Yi − µ1(Ai, XRi
, Ri)][

1
ê1(Xi)

− 1
ē1(Xi)

]
∣∣∣∣∣

+
∣∣∣∣∣ 1n

n∑
i=1

Ai I{Ri = 1p} [Yi − µ1(Ai, XRi
, Ri)][

1
ē1(Xi)

− 1
e1(Xi)

]
∣∣∣∣∣

p−→
∣∣∣∣∣ 1n

n∑
i=1

Ai I{Ri = 1p} [Yi − µ1(Ai, XRi
, Ri)][

1
ê1(Xi)

− 1
ē1(Xi)

]
∣∣∣∣∣

where the second inequality follows from the triangle inequality and the last convergence
follows from the law of large numbers and Lemma S11. For

E
(∣∣∣∣∣ 1n

n∑
i=1

Ai I{Ri = 1p} [Yi − µ1(Ai, XRi
, Ri)][

1
ê1(Xi)

− 1
ē1(Xi)

]
∣∣∣∣∣
)

≤ 1
n

n∑
i=1

E
(∣∣∣∣∣Ai I{Ri = 1p} [Yi − µ1(Ai, XRi

, Ri)][
1

ê1(Xi)
− 1
ē1(Xi)

]
∣∣∣∣∣
)

≤ 1
n

n∑
i=1

(
E {Ai I{Ri = 1p} [Yi − µ1(Ai, XRi

, Ri)]}2
) 1

2

{
E[ 1
ê1(Xi)

− 1
ē1(Xi)

]2
} 1

2

=o(1).

Therefore, |I2| = op(1) by Markov’s inequality. Finally, for I3, by the Cauchy-Schwarz
inequality we obtain

E(|I3|) = E
(∣∣∣∣∣ 1n

n∑
i=1

[µ̂(Ai, XRi
, Ri) − µ(Ai, XRi

, Ri)][1 − Ai I{Ri = 1p}
ê1(Xi)

]
∣∣∣∣∣
)

≤ 1
n

n∑
i=1

E
(∣∣∣∣∣[µ̂(Ai, XRi

, Ri) − µ(Ai, XRi
, Ri)][1 − Ai I{Ri = 1p}

ê1(X1)
]
∣∣∣∣∣
)

≤ 1
n

n∑
i=1

(
E[µ̂(Ai, XRi

, Ri) − µ(Ai, XRi
, Ri)]2

) 1
2

E
[
1 − Ai I{Ri = 1p}

ê1(Xi)

]2


1
2

= o(1).

Therefore, we have |I3| = op(1) by Markov’s inequality. Put |I1|, |I2|, and |I3| together.
|S1|

p−→ 0, which in turn implies that S1
p−→ 0 by the definition of convergence in probability.
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Similarly, we can show that

S0 := 1
n

n∑
i=1

µ̂0(Ai, XRi
, Ri) + (1 − Ai) I{Ri = 1p} [Yi − µ̂0(Ai, XRi

, Ri)]
ê0(Xi)

− µ0

p−→ 0.

With S1
p−→ 0 and S0

p−→ 0, we obtain τ̂AIJPW
p−→ τ .

(2) We want to show that τ̂AIJPW is consistent if E[|êa(X) − ea(X)|2] = o(1) and E[| 1
êa(X) −

1
ea(X) |

2] = o(1) holds. Hence, the classical doubly robust property is satisfied.

We write the τ̂AIJPW in another format compared to (1):

τ̂AIJPW = 1
n

n∑
i=1

Ai I{Ri = 1p}Yi

ê1(Xi)
− (1 − Ai) I{Ri = 1p}Yi

ê0(Xi)

+ µ̂1(Ai, XRi
, Ri)

(
1 − Ai I{Ri = 1p}

ê1(Xi)

)
− µ̂1(Ai, XRi

, Ri)
[
1 − (1 − Ai) I{Ri = 1p}

ê0(Xi)

].
We notice

S ′
1 := 1

n

n∑
i=1

Ai I{Ri = 1p}Yi

ê1(Xi)
+ µ̂1(Ai, XRi

, Ri)
(

1 − Ai I{Ri = 1p}
ê1(Xi)

)− µ1

= 1
n

n∑
i=1

[Ai I{Ri = 1p}Yi

e1(Xi)
− µ1] + 1

n

n∑
i=1

µ̂1(Ai, XRi
, Ri)

(
1 − Ai I{Ri = 1p}

e1(Xi)

)

+ 1
n

n∑
i=1

(
1

ê(Xi)
− 1
e(Xi)

)
Ai I{Ri = 1p}[Yi − µ̂1(Ai, XRi

, Ri)]

=I ′
1 + I ′

2 + I ′
3

where

I ′
1 := 1

n

n∑
i=1

[Ai I{Ri = 1p}Yi

e1(Xi)
− µ1],

I ′
2 := 1

n

n∑
i=1

µ̂1(Ai, XRi
, Ri)

(
1 − Ai I{Ri = 1p}

e1(Xi)

)
,

I ′
3 := 1

n

n∑
i=1

(
1

ê(Xi)
− 1
e(Xi)

)
Ai I{Ri = 1p}[Yi − µ̂1(Ai, XRi

, Ri)].

Similarly, we can show that I ′
1 = op(1), I ′

2 = op(1), and I ′
3 = op(1). Moreover, by a similar
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way we can show that S ′
0

p−→ 0 where

S ′
0 := 1

n

n∑
i=1

(1 − Ai) I{Ri = 1p}Yi

ê0(Xi)
+ µ̂0(Ai, XRi

, Ri)
[
1 − (1 − Ai) I{Ri = 1p}

ê0(Xi)

]− µ0.

S.6.2 Proof of Theorem 5

Then we show the doubly robustness of

τ̂DML = 1
n

n∑
i=1

µ̂[−k(i)]
1

(
Ai, XRi

, Ri

)
− µ̂

[−k(i)]
0

(
Ai, XRi

, Ri

)

+
Ai I{Ri = 1p}

[
Yi − µ̂

[−k(i)]
1 (Ai, XRi

, Ri)
]

ê
[−k(i)]
1 (Xi)

−
(1 − Ai) I{Ri = 1p}

[
Yi − µ̂

[−k(i)]
0 (Ai, XRi

, Ri)
]

ê
[−k(i)]
0 (Xi)

.
= 1
n

K∑
k=1

|Ik|τ̂ [−k]
AIJPW.

where τ̂ [−k]
AIJPW is the AIJPW estimator with data I−k. The proof proceeds by treating each

fold individually. We present the detailed argument under condition (c.2) only, since the
result under (c.1) follows directly by combining the technique used for (c.2) with the proof
of Theorem 4. Specifically,

τ̂
[−k]
AIJPW = 1

|Ik|
∑
i∈Ik

µ̂[−k]
1

(
Ai, XRi

, Ri

)
− µ̂

[−k]
0

(
Ai, XRi

, Ri

)

+
Ai I{Ri = 1p}

[
Yi − µ̂

[−k]
1 (Ai, XRi

, Ri)
]

ê
[−k]
1 (Xi)

−
(1 − Ai) I{Ri = 1p}

[
Yi − µ̂

[−k]
0 (Ai, XRi

, Ri)
]

ê
[−k]
0 (Xi)

.
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It is sufficient to show that τ̂ [−k]
AIJPW

p−→ 0 which is implied by τ̂ [−k]
AIJPW

p−→ 0 | I−k. We focus on

S
[−k]
1 := 1

|Ik|
∑
i∈Ik

µ̂[−k]
1 (Ai, XRi

, Ri) + Ai I{Ri = 1p} [Yi − µ̂
[−k]
1 (Ai, XRi

, Ri)]
ê

[−k]
1 (Xi)

− µ1

= 1
|Ik|

∑
i∈Ik

µ̂[−k]
1 (Ai, XRi

, Ri) − E [µ(Ai, XRi
, Ri)] + Ai I{Ri = 1p} [Yi − µ̂

[−k]
1 (Ai, XRi

, Ri)]
ê

[−k]
1 (Xi)


= 1

|Ik|
∑
i∈Ik

{µ(Ai, XRi
, Ri) − E [µ(Ai, XRi

, Ri)]} + 1
|Ik|

∑
i∈Ik

Ai I{Ri = 1p} [Yi − µ1(Ai, XRi
, Ri)]

ê
[−k]
1 (Xi)

+ 1
|Ik|

∑
i∈Ik

[µ̂[−k](Ai, XRi
, Ri) − µ(Ai, XRi

, Ri)][1 − Ai I{Ri = 1p}
ê

[−k]
1 (Xi)

]

=I [−k]
1 + I

[−k]
2 + I

[−k]
3

where

I
[−k]
1 := 1

|Ik|
∑
i∈Ik

{µ(Ai, XRi
, Ri) − E [µ(Ai, XRi

, Ri)]} ,

I
[−k]
2 := 1

|Ik|
∑
i∈Ik

Ai I{Ri = 1p} [Yi − µ1(Ai, XRi
, Ri)]

ê
[−k]
1 (Xi)

,

I
[−k]
3 := 1

|Ik|
∑
i∈Ik

[µ̂[−k](Ai, XRi
, Ri) − µ(Ai, XRi

, Ri)][1 − Ai I{Ri = 1p}
ê

[−k]
1 (Xi)

].

By Assumption 9, we have Var(I [−k]
1 ) and Var(I [−k]

2 ) converges to 0. In concreteness,

Var(I [−k]
1 ) = E[Var(I [−k]

1 | I−k)] + Var(E[I [−k]
1 | I−k)]

= 1
|Ik|

Var[µ(Ai, XRi
, Ri)] = o(1)

Var(I [−k]
2 ) = E[Var(I [−k]

2 | I−k)] + Var(E[I [−k]
2 | I−k)]

= 1
|Ik|

Var
{
Ai I{Ri = 1p} [Yi − µ1(Ai, XRi

, Ri)]
ê

[−k]
1 (Xi)

}
= o(1)

since |Ik| is determined by I−k, Lemma S11, and the random variables are either almost
surely bounded or have uniformly bounded second moments. Hence, by Chebyshev’s in-
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equality and I−k
p−→ 0. Finally, for I3, by the Cauchy-Schwarz inequality, we obtain

E(|I3| | I−k) = E
(∣∣∣∣∣ 1n

n∑
i=1

[µ̂(Ai, XRi
, Ri) − µ(Ai, XRi

, Ri)][1 − Ai I{Ri = 1p}
ê1(Xi)

]
∣∣∣∣∣ | I−k

)

≤ 1
n

n∑
i=1

E
(∣∣∣∣∣[µ̂(Ai, XRi

, Ri) − µ(Ai, XRi
, Ri)][1 − Ai I{Ri = 1p}

ê1(X1)
]
∣∣∣∣∣ | I−k

)

≤ 1
n

n∑
i=1

(
E[µ̂(Ai, XRi

, Ri) − µ(Ai, XRi
, Ri)]2 | I−k

) 1
2

E
[
1 − Ai I{Ri = 1p}

ê1(Xi)

]2

| I−k


1
2

= op(1).

Since we have bounded second moments, by Lemma S14, we have E(|I3| | I−k) uniform
integrable

lim
B→∞

sup
n

E
[
E(|I3| | I−k)I{E(|I3| | I−k) > B}

]
= 0,

where together with E(|I3| | I−k) = op(1) and Chapter 13 in Williams (1991), we find
that E(|I3|) → o(1). Therefore, we have |I3| = op(1) by Markov’s inequality. By the same
argument as Theorem 4, we obtain S[−k]

1
p−→ 0. We can also construct S[−k]

0
p−→ 0, and thus

τ̂DML
p−→ τ .

S.7 Theoretical foundations of inference

S.7.1 Proof of Theorem 6

Denote Z = (A,X, Y,R). Recall

τ̂AIJPW = 1
n

n∑
i=1

µ̂1(Ai, XRi
, Ri) − µ̂0(Ai, XRi

, Ri)

+ Ai I{Ri = 1p} [Yi − µ̂1(Ai, XRi
, Ri)]

ê1(Xi)
− (1 − Ai) I{Ri = 1p} [Yi − µ̂0(Ai, XRi

, Ri)]
ê0(Xi)

,
and define

τAIJPW := 1
n

n∑
i=1

µ1(Ai, XRi
, Ri) − µ0(Ai, XRi

, Ri)

+ Ai I{Ri = 1p} [Yi − µ1(Ai, XRi
, Ri)]

e1(Xi)
− (1 − Ai) I{Ri = 1p} [Yi − µ0(Ai, XRi

, Ri)]
e0(Xi)

.
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For the simplicity of the proof, we also define following notations for decomposing the ATE

τ(Z) = µ1(A,XR, R) − µ0(A,XR, R), (S2)

ψ(Z) = A I{R = 1p} [Y − µ1(A,XR, R)]
e1(X) − (1 −A) I{R = 1p} [Y − µ0(A,XR, R)]

e0(X) , (S3)

τ̂(Z) = µ̂1(A,XR, R) − µ̂0(A,XR, R), (S4)

ψ̂(Z) = A I{R = 1p} [Y − µ̂1(A,XR, R)]
ê1(X) − (1 −A) I{R = 1p} [Y − µ̂0(A,XR, R)]

ê0(X) . (S5)

Lemma S5 establishes that τ̂AIJPW is asymptotic linear with influence function

µ1(A,XR, R) − µ0(A,XR, R)

+ A I{R = 1p} [Y − µ1(A,XR, R)]
e1(X) − (1 − A) I{R = 1p} [Y − µ0(A,XR, R)]

e0(X) .

Its proof, by the first two following Lemmas, splits the estimation error into two parts.
Shortly, we want to prove τAIJPW − τ̂AIJPW = Pn

[
(τ − τ̂) + (ψ − ψ̂)

]
= op(n−1/2). Finally,

Lemma S6 computes the variance using the corresponding influence function.

Lemma S3. Under Assumptions 10 and 11, (Pn − P)
[
(τ − τ̂) + (ψ − ψ̂)

]
= op(n−1/2).

Proof. This empirical process term requires that both µ̂a and êa are consistent. Or it might
diverge. We can derive that

(Pn − P)
[
(τ − τ̂) + (ψ − ψ̂)

]
= (Pn − P)(τ − τ̂) + (Pn − P)(ψ − ψ̂)

= (Pn − P)(ψ − ψ̂) + op(n−1/2)

For the second equality, the rate holds by Assumption 11(a) and Lemma 2 in Kennedy
et al. (2020) or Assumption 11(b), Lemma 19.24 in Van der Vaart (2000). We also notice

(Pn − P)(ψ − ψ̂) = (Pn − P)
{
A I{R = 1p} [Y − µ1(A,XR, R)]

e1(X) − A I{R = 1p} [Y − µ̂1(A,XR, R)]
ê1(X)

}

+ (Pn − P)
{

(1 − A) I{R = 1p} [Y − µ1(A,XR, R)]
e1(X)

− (1 − A) I{R = 1p} [Y − µ̂1(A,XR, R)]
ê1(X)

}
.
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Further, we observe

(Pn − P)
{
A I{R = 1p} [Y − µ1(A,XR, R)]

e1(X) − A I{R = 1p} [Y − µ̂1(A,XR, R)]
ê1(X)

}

= (Pn − P)
{
A I{R = 1p} [Y − µ1(A,XR, R)]

e1(X) − A I{R = 1p} [Y − µ1(A,XR, R)]
ê1(X)

}

+ (Pn − P)
{
A I{R = 1p} [Y − µ1(A,XR, R)]

ê1(X) − A I{R = 1p} [Y − µ̂1(A,XR, R)]
ê1(X)

}
= oP (n−1/2).

The first equality is by add and subtract and the consistency of e1(X). The second equality
is by Assumption 11(a) and Lemma 2 in Kennedy et al. (2020) or Assumption 11(b), Lemma
19.24 in Van der Vaart (2000).

Lemma S4. Under Assumptions 1–4, 10, and 11, P
[
(τ − τ̂) + (ψ − ψ̂)

]
= op(n−1/2).

Proof. We have P(ψ) = 0 by Lemma S12, therefore we focus on P
[
τ − τ̂ − ψ̂

]
. It is equal

to

P
{
µ1(A,XR, R) − µ̂1(A,XR, R) − µ0(A,XR, R) + µ̂0(A,XR, R)

− A I{R = 1p} [Y − µ̂1(A,XR, R)]
ê1(X) + (1 − A) I{R = 1p} [Y − µ̂0(A,XR, R)]

ê0(X)

}
.

We concentrate on

P
{
µ1(A,XR, R) − µ̂1(A,XR, R) − A I{R = 1p} [Y − µ̂1(A,XR, R)]

ê1(X)

}

= P
{
µ1(A,XR, R) − µ̂1(A,XR, R) − A I{R = 1p} [µ1(A,XR, R) − µ̂1(A,XR, R)]

ê1(X)

}

= P
{
µ1(A,XR, R = 1p) − µ̂1(A,XR, R = 1p) − e1(X) [µ1(A,XR, R = 1p) − µ̂1(A,XR, R = 1p)]

ê1(X)

}

The first equality follows from Lemma S11. The second is by conditioning on X and use
the law of iterated expectaion by noticing that µ1(A,XR, R = 1p) and µ̂1(A,XR, R = 1p)
are functions of X.

P
(

[µ1(A,XR, R = 1p) − µ̂1(A,XR, R = 1p)][e1(X) − ê1(X)]
e1(X)ê1(X)

)
,

≲ ∥µ̂a(A,XR, R = 1p) − µa(A,XR, R = 1p)∥2 · ∥ê1(X) − e1(X)∥2 = oP (n−1/2)

where the inequality is followed by the Cauchy–Schwarz inequality, and the last equality is
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by Assumption 10. Specifically, we can show that

∥µ̂a(A,XR, R = 1p) − µa(A,XR, R = 1p)∥2 ≤ ∥µ̂a(A,XR, R) − µa(A,XR, R)∥2√
P(R = 1p)

.

Also,

P
{
µ0(A,XR, R) − µ̂0(A,XR, R) − (1 − A) I{R = 1p} [Y − µ̂0(A,XR, R)]

ê0(X)

}
= op(n−1/2)

by a similar argument. Therefore, P
[
(τ − τ̂) + (ψ − ψ̂)

]
= op(n−1/2).

Lemma S5. Under Assumptions 1–4, 10, and 11, τ̂AIJPW = τAIJPW + op(n−1/2).

Proof. The Lemma holds because

τAIJPW − τ̂AIJPW = (Pn − P)
[
(τ − τ̂) + (ψ − ψ̂)

]
+ P

[
(τ − τ̂) + (ψ − ψ̂)

]
= op(n−1/2)

by Lemma S3 and S4.

Lemma S6. Under Assumptions 1–4, 10, and 11, Var[τ(Z)+ψ(Z)] = Var [τ(A,XR, R)]+
E
[

σ2
1(X)

e1(X)

]
+ E

[
σ2

0(X)
e0(X)

]
.

Proof. We simplify the formula V = Var[τ(Z)] + Var[ψ(Z)] and we notice

Var[ψ(Z)] = E
(
A I{R = 1p} [Y − µ1(A,XR, R)]

e1(X)

)2

+ E
(

(1 − A) I{R = 1p} [Y − µ0(A,XR, R)]
e0(X)

)2

(S6)
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which includes two parts, and for the first one

E
(
A I{R = 1p} [Y − E(Y | A = 1, X,R = 1p)]

e1(X)

)2

= E
(
A I{R = 1p} [Y − E(Y | A = 1, X)]2

e1(X)2

)

= E
{
E
(
I{R = 1p} [Y − E(Y | A = 1, X)]2

e1(X)2 | A = 1, X
)
P(A = 1 | X)

}

= E
{
P(R = 1p | A = 1, X)

e2
1(X) E

(
[Y − E(Y | A = 1, X)]2 | A = 1, X

)
P(A = 1 | X)

}

= E
{
E ([Y − E(Y | A = 1, X)]2 | A = 1, X)

e1(X)

}

= E
{

Var [Y (1) | X]
e1(X)

}

where the first equality holds by definition and Assumption 3. The second equality uses
law of iterated expectation, and the third equality is from Assumption 3. We can also yield
that the second term in (S6) equals E

{
Var[Y (0)|X]

e0(X)

}
.

Therefore the doubly robust estimator τ̂AIJPW is asymptotically linear and by the central
limited theorem,

√
n (τ̂AIJPW − τ)⇝ N (0, V )

V = Var [τ(A,XR, R)] + E
[
σ2

1(X)
e1(X)

]
+ E

[
σ2

0(X)
e0(X)

]

where σ2
a(X) = Var [Yi(a) | X] for a = 0, 1.

S.8 Discussions on completeness

S.8.1 Sufficient conditions for completeness

Our work extends the sufficient conditions to both integral equations, whereas Yang et al.
(2019) only address the first. Remember that a function f(X, Y ) is said to be complete
in Y if, for any square-integrable function g(X), the condition

∫
g(X)f(X, Y ) dν(X) = 0

implies that g(X) = 0 almost surely. We provide two sufficient conditions for completeness.
The first condition applies to discrete support and requires a full-rank condition on the
observed transition matrix. The second condition applies to continuous support within the
exponential family. We then connect the conditions to the integral equation ξ(X) and the
integral equation f(X), which together yield the identification formulas.
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Lemma S7. Suppose that X and Y are discrete, Xj ∈ {xj1, . . . , xjJj
} and Y ∈ {y1, . . . , yK}.

Let q = J1 × · · · × Jp, and let Θ by a K × q matrix with k-th row Θk = f(X, yk) evaluated
at all possible values of X. Then g(X) = 0 if Rank(Θ) = q.

Proof. Denote vec(X) = (x1, . . . , xq)⊤ where the column vector listing all possible combi-
nations of the entries of X. Then it is easy to rewrite everything into matrix formats. The
full column-rank to trivial-nullspace result follows directly from the Rank–Nullity Theorem
(Horn and Johnson, 2012).

Lemma S8. Suppose f(X, Y ) = α(X)h(Y ) exp{λ(Y )⊤η(X)}, then it is complete in Y if
(i) α(X) > 0, (ii) λ(Y ) > 0 for every Y ∈ B where B is an open set, and (iii) the mapping
η(X) is one-to-one.

Proof. See Yang et al. (2019).

Remark 9. In the Gaussian model

f(X, Y ) = f(Y | X) f(X) = 1√
2πσ2

exp
[
− (Y −β0−β⊤

1 X)2

2σ2

]
f(X), β1 ∈ Rp, X ∈ Rp,

is complete in Y. Identify,

α(X) = 1√
2πσ2

f(X), λ(Y ) = σ−2Y β1, η(X) = X.

Clearly α(X) > 0, λ(Y ) > 0 on any open set B. All conditions of Lemma S8 hold, and
f(X, Y ) is complete in Y .

Remark 10. We consider a sufficient completeness condition for our identifications. For
the joint distribution f(A = a,X, Y,R = 1p) in the identification formula, we assume
completeness in Y for a = 0, 1. That is, we can define fa(X, Y ) = f(A = a,X, Y,R = 1p).
Suppose that X and Y are discrete, with Xj ∈ {xj1, . . . , xjJj

} and Y ∈ {y1, . . . , yK}. Let
q = J1 × · · · × Jp, and let Θa be a K × q matrix where the k-th row is Θak = fa(X, yk)
evaluated at all possible values of X. Then, by Lemma S7, Rank(Θa) = q. A similar
argument holds for the conditional marginal distribution f(Y | A = a,X,R = 1p), which is
complete in X or Y for a = 0, 1.

S.8.2 Equivalence of Assumptions 5 and 5′

The two completeness assumptions are equivalent if f(A = a,X,R = 1p) > 0 for any a and
this equivalence is particularly clear in the illustrative case of discrete confounders. For
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example, when p = 1, equation (3) becomes

f{A = a, Y,R = 0} =
J∑

i=1

P{R = 0 | Xi, A = a}
P{R = 1 | Xi, A = a}

× f{A = a,Xi, Y, R = 1}, a ∈ {0, 1}.

with the matrix format
f{A = a, Y = y1, R = 0}

...

f{A = a, Y = yK , R = 0}


K×1

= Θa


ξ0,a(x1)

...

ξ0,a(xJ)


J×1

.

where

Θa =


f{A = a,X1, Y = y1, R = 1} · · · f{A = a,XJ , Y = y1, R = 1}

... ...

f{A = a,X1, Y = yK , R = 1} · · · f{A = a,XJ , Y = yK , R = 1}


K×J

.

In the alternative representation, equation (10) becomes

f{Y | A = a,R = 0} =
J∑

i=1
f{Xi | A = a,R = 0}

× f{Y | A = a,X = xi, R = 1}, a ∈ {0, 1}.

with the matrix format
f{Y = y1 | A = a,R = 0}

...

f{Y = yK | A = a,R = 0)}


K×1

= Γa


f0,a(X1)

...
f0,a(XJ)


J×1

.

where

Γa =


f{y1 | A = a,X1, R = 1} · · · f{y1 | A = a,XJ , R = 1}

... ...

f{yK | A = a,X1, R = 1} · · · f{yK | A = a,XJ , R = 1)}


K×J

.

The full column ranks of Θa and Γa (the discrete analogue of the completeness assump-

61



tion) coincide. Indeed, writing Θa = Da Γa, where

Da =



f{A = a,X1, R = 1} 0 · · · 0

0 f{A = a,X2, R = 1} · · · 0
... ... . . . ...

0 0 · · · f{A = a,XJ , R = 1}


J×J

,

the positivity condition f{A = a, xj, R = 1} > 0 for all j implies that Da is invertible.
Therefore rank(Θa) = rank(DaΓa) = rank(Γa), so Θa and Γa have identical full column
rank.

For the general proof, specifically, we first show that the completeness of f(A =
a,X, Y,R = 1p) in Y implies the completeness of f(Y | A = a,X,R = 1p) in Y . For
any square-integrable function g(X), such that

∫
g(X)f(Y | A = a,X,R = 1p) dν(X) = 0,

we have
∫ g(X)

f(A=a,X,R=1p)f(Y,A = a,X,R = 1p) dν(X) = 0. Because f(Y,A = a,X,R = 1p)
is complete in Y , we then get g(X)

f(A=a,X,R=1p) = 0. And thus g(X) = 0 by f(A = a,X,R =
1p) > 0. Therefore, f(Y | A = a,X,R = 1p) is complete in Y .

Conversely, we assume the completeness of f(Y | A = a,X,R = 1p) in Y . From∫
g(X)f(A = a,X, Y,R = 1p)dν(X) = 0, we observe that

∫
g(X)f(A = a,X,R =

1p)f(A=a,X,Y,R=1p)
f(A=a,X,R=1p) dν(X) =

∫
g(X)f(A = a,X,R = 1p)f(Y | A = a,X,R = 1p)dν(X) = 0.

Since f(Y | A = a,X,R = 1p) is complete in Y , g(X)f(A = a,X,R = 1p) = 0. Hence,
f(A = a,X, Y,R = 1p) is complete in Y .

S.8.3 Trivial intersection of Im(Θa1) and ker(Θa2)

For any a ∈ {0, 1} we have the property Im(Θa1) ∩ ker(Θa2) = {0}, where recall

(Θa1g)(X) =
∫
g(Y ) f(Y | A = a,X,R = 1p) dν(Y ),

(Θa2u)(Y ) =
∫
u(X) f(A = a,X, Y,R = 1p) dν(X).

Proof. This result follows from the Rank–Nullity Theorem since the kernel of Θa2 coincides
with that of the adjoint estimator of Θa1. However, we opt to give a direct proof here rather
than appealing to the theorem’s general statement.
(1) We want to show that Im(Θ̃a1) ∩ ker(Θa2) = {0} where

(Θ̃a1g)(X) :=
∫
g(Y )f(A = a,X, Y,R = 1p)dν(Y ).
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We define the inner product ⟨γ, η⟩X :=
∫
γ(X)η(X)dν(X). Then, we find that

⟨Θ̃a1g, u⟩X =
∫ [∫

g(Y )f(A = a,X, Y,R = 1p)dν(Y )
]
u(X)dν(X)

=
∫ [∫

u(X)f(A = a,X, Y,R = 1p)dν(X)
]
g(Y )dν(Y )

= ⟨g,Θa2u⟩Y

by Fubini’s theorem. Assume that there exists ǔ(X) and ǧ(Y ) such that ǔ(X) = (Θ̃a1ǧ)(X)
and (Θa2ǔ)(Y ) = 0. We notice

⟨Θ̃a1ǧ, Θ̃a1ǧ⟩X = ⟨Θ̃a1ǧ, ǔ⟩X = ⟨ǧ,Θa2ǔ⟩Y = 0

From ⟨Θ̃a1ǧ, Θ̃a1ǧ⟩X = 0, we get ǔ(X) = (Θ̃a1ǧ)(X) = 0 by the basic property in the
functional analysis. Thus, Im(Θa1) ∩ ker(Θa2) = {0}.

(2) We want to show that Im(Θa1) ∩ ker(Θa2) = {0}. For any ǔ(X) and ǧ(Y ) such that

ǔ(X) = (Θa1ǧ)(X) and (Θa2ǔ)(Y ) = 0,

we have ǔ(X) = (Θ̃a1g̃)(X), where g̃(Y ) is defined by

g̃(Y )f(A = a,X,R = 1p) = ǧ(Y ).

Since Im(Θ̃a1) ∩ ker(Θa2) = {0} from (1), it follows that ǔ(X) = 0. Therefore, Im(Θa1) ∩
ker(Θa2) = {0}.

S.9 Illustrative examples for two sets of identification formulas

We present a few examples to illustrate that the two sets of identification formulas apply in
different scenarios. The first example demonstrates that the initial set of formulas is valid
when the dimension of Y exceeds that of X. By contrast, the second example emphasizes
the case in which the dimension of Y is lower than that of X. We observe (A,XR, R, Y ) and
focus on the treated arm A = 1. All probabilities and expectations below are conditional
on A = 1. Also for simplicity, we assume that R is a dummy variable.
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S.9.1 Completeness in Y

The completeness in Y is quite straight forward. As an illustration, let Y have three
categories and X have two categories. The top panel reports the (full-data) joint cell
probabilities of (Y,X) within each R stratum, conditional on A = 1. The bottom panel
shows the observed-data distribution. When R = 0, only one column of X is observed,
whereas for R = 1 both columns are observed.

R = 0
Y \X 0 1

0 1/8 0
1 1/8 1/8
2 0 1/8

R = 1
Y \X 0 1

0 1/12 0
1 1/12 1/12
2 1/12 1/6

Notes. Cell probabilities are conditional on A = 1. Each block sums to 1/2, so
P (R = 0 | A = 1) = P (R = 1 | A = 1) = 1/2.

R = 0
Y \X N.A.

0 1/8
1 1/4
2 1/8

R = 1
Y \X 0 1

0 1/12 0
1 1/12 1/12
2 1/12 1/6

Notes. We observe only the cells revealed under each R pattern: for R = 0 a
single X column is observed; for R = 1 both X columns are observed. Totals
again equal 1/2 within each R block.

By the identification procedure in Section 3.2.2 and the observed data, Bayes’ rule yields
P(Y | A = 1, R = 0) = (1/4, 1/2, 1/4). Let

Θ =


1/3 0
1/3 1/3
1/3 2/3

 ,

where Θ denotes P(Y | A = 1, X,R = 1p) (see S.8.1). Under outcome-independent MNAR
Y ⊥ R | A,X, equation (10) implies

P(Y | A = 1, R = r) = ΘP(X | A = 1, R = r), r ∈ {0, 1}.

Solving this system gives P(X | A = 1, R = r) = (1/2, 1/2)⊤ for r = 0, 1.
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S.9.2 Completeness in X

The completeness condition in X is rather abstract. To provide intuition, we present two
examples that illustrate the low-dimensional structure embodied in (13). We now consider
the case where Y takes two values and X takes three values. For the first example. Take
j ∈ {0, 1, 2} with P(X = j) = 1/3, let

P(Y | X) =
1/4 1/2 3/4

3/4 1/2 1/4

 (rows Y = 0, 1; columns X = 0, 1, 2),

and set P(R = 1 | A = 1, X) = (1/2, 1/2, 1/2). This construction enforces Y ⊥ R | A,X.

R = 0
Y \X 0 1 2

0 1/24 1/12 1/8
1 1/8 1/12 1/24

R = 1
Y \X 0 1 2

0 1/24 1/12 1/8
1 1/8 1/12 1/24

Notes. Each block sums to 1/2 (conditional on A = 1). Because
P (R = 1 | A = 1, X) is constant,
P (Y | X,R = 0) = P (Y | X,R = 1) = P (Y | X), so the two panels are
identical column-wise.

R = 0
Y \X N.A.

0 1/4
1 1/4

R = 1
Y \X 0 1 2

0 1/24 1/12 1/8
1 1/8 1/12 1/24

Notes. For R = 0, X is unobserved but P (Y,A = 1, R = 0) = (1/4, 1/4) is
observed. For R = 1, X is fully observed. Totals again equal 1/2 within each R
block.

From the observed sample with R = 1, we summarize the conditional and joint distri-
butions as follows. The first matrix,

Θ1 = P(Y | A = 1, X,R = 1) =
1/4 1/2 3/4

3/4 1/2 1/4

 ,
captures the conditional probabilities of Y given treatment A = 1, confounders X, and
being observed (R = 1). Each row corresponds to a value of X, and each column represents
a value of Y .
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The second matrix,

Θ2 = P(X, Y,R = 1) =
1/24 1/12 1/8

1/8 1/12 1/24

 ,
represents the joint distribution of (X, Y ) among the observed units. This matrix encodes
both the marginal variation in X and the dependence structure between X and Y within
the R = 1 subpopulation.

Meanwhile, the unobserved value 1
P(R=1|A=1,X) = (2, 2, 2), and we have ϕ = (2, 2) such

that

ϕ

1/4 1/2 3/4
3/4 1/2 1/4

 =
(
2 2 2

)
.

Thus, Assumption 6 holds. To identify the ATE, note that based on observed values we
have

ϕΘ1Θ⊤
2 = ϕ

7/48 5/48
5/48 7/48

 = P(Y ) =
(
1/2 1/2

)
.

Hence, ϕ can be uniquely determined. For the second example, we take X ∈ {0, 1, 2} with
P(X = j) = 1/3. Let

P(Y | A = 1, X) =
1/4 1/4 3/4

3/4 3/4 1/4

 (rows Y = 0, 1; columns X = 0, 1, 2),

and set P(R = 1 | A = 1, X) = (1/3, 1/3, 1/2). Similarly, we can get ϕ = (7/12, 1/4).
In the same manner, we are also able to identify the underlying distribution. These two
examples highlight two key intuitions. Across strata, either the variation in the missing
patterns is identical, or the missing patterns coincide with the outcome distribution.

S.10 Nonparametric (machine learning) two-stage least squares

S.10.1 Extra notations

Let Hp
J = {hj(W ) = exp(−W⊤W )W λj : j = 1, . . . , J} denote the class of Hermite-type

basis functions, where W λj = W λj1
1 · · ·W λjp

p , λj = (λj1 , . . . , λjp) is a multi-index, and |λj| =∑p
l=1 λjl

, with |λj| non-decreasing in j. Define the standardized variable W̄ = Σ−1/2(W−µ),
where µ and Σ are fixed mean and covariance.
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S.10.2 Compactness and computational complexity

Although equations (10) and (14) are point-identified under the proper assumption, esti-
mating fra(X) and ϕa(Y ) is difficult because it entails solving a Fredholm integral equation
of the first kind which is an ill-posed inverse problem.6 Meanwhile, the associated linear
operator is compact and its inverse is unbounded, so even small sampling error in the es-
timated densities f(A = a,X, Y,R = 1p) and f(Y | A = a,X,R = 1p

)
can be greatly

amplified, producing substantial bias in the plug-in estimators f̂ra(X) and ϕ̂a(Y ). See
Newey and Powell (2003) for a detailed exposition of this ill-posedness in nonparametric
IV models and Kress (1999) for perturbation theory.

Before discussing compactness, for computational simplicity, we assume the following
Hermite expansions,

fra(X) ≈
JX∑
j=1

θj
rahj(X̄) and ϕa(Y ) ≈

JY∑
j=1

γj
ahj(Ȳ ),

where the standardization stabilizes the coefficients. Therefore,

f(Xr, Y | A = a,R = r) =
∫
fra(X)f(Y | A = a,X,R = 1p) dν(Xr̄)

=
JX∑
j=1

θj
ra

∫
hj(X̄)f(Y | A = a,X,R = 1p) dν(Xr̄)

=
JX∑
j=1

θj
raH

j
ra(Xr, Y ) (S7)

by the second identification equation (10) where the conditional expectation Hj
ra(Xr, Y ) :=∫

hj(X̄)f(Y | A = a,X,R = 1p) dν(Xr̄). And

f(A = a, Y ) =
∫
ϕa(Ỹ )

 ∫ f(Ỹ | A = a,X,R = 1p) f(A = a,X, Y,R = 1p) dν(X)
 dν(Ỹ )

=
JY∑
j=1

γj
a

∫
hj( ¯̃Y )

 ∫ f(Ỹ | A = a,X,R = 1p)f(A = a,X, Y,R = 1p)dν(X)
 dν(Ỹ )

=
JY∑
j=1

γj
aH

j
a(Y ) (S8)

where the conditional expectation Hj
a(Y ) :=

∫
f(Ỹ | A = a,X,R = 1p)f(A = a,X, Y,R =

1p)dν(Y ).
6See the estimation of (10) in Yang et al. (2019).
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First of all, let Dλg(W ) = ∂λg(W )
∂W

λ1
1 ···∂W

λp
p

where λ = (λ1, . . . , λp). In particular, D0g(W ) =
g(W ). For a vector valued function H(W ) = {h1(W ), . . . , hJ(W )}⊤, also defineDλH(W ) ={
Dλh1(W ), . . . , DλhJ(W )

}⊤
. For parameters m > 0, m0, δ0 > p/2, and δ ∈ (p/2, δ0),

consider the function space

Gm,m0,δ0,B =

g(W ) :
∑

|λ|≤m+m0

∫ {
Dλg(W̄ )

}2
(1 + W̄⊤W̄ )δ0dx ≤ B


and W̄ is the standardized version ofW . Define the norm ∥g∥G = max|λ|≤m supW

∣∣∣Dλg(W̄ )
∣∣∣ (1+

W̄⊤W̄ )δ. Gallant and Nychka (1987) show that the closure of Gm,m0,δ0,B with respect to the
norm ∥g∥G is compact.

Assumption S4. Assume that the functions fra(X) as well as their estimators fra(X) all
belong to the function class GmX ,mX0,δX0,BX

for any r and a.

Assumption S5. Assume that the functions ϕa(Y ) as well as their estimators ϕ̂a(Y ) all
belong to the function class GmY ,mY 0,δY 0,BY

for any a.

Given the Hermite approximations, the regularization in Assumption S4 translates to

θ⊤
ra

 ∑
|λ|≤mX+mX0

∫ {
DλH(X̄)

}{
DλH(X̄)

}⊤
(1 + X̄⊤X̄)δX0dν(X)

 θra ≤ BX ,

where θra = (θ1
ra, . . . , θ

JX
ra )⊤. The regularization in Assumption S5 translates to

γ⊤
a

 ∑
|λ|≤mY +mY 0

∫ {
DλH(Ȳ )

}{
DλH(Ȳ )

}⊤
(1 + Ȳ 2)δY 0dν(Y )

 γa ≤ BY ,

where γa = (γ1
a, . . . , γ

JY
a )⊤. Therefore, we choose the positive definite matrices ΛX and ΛY

in the constraint for regularization as

ΛX =
∑

|λ|≤mX+mX0

∫ {
DλH(X̄)

}{
DλH(X̄)

}⊤
(1 + X̄⊤X̄)δX0dν(X),

ΛY =
∑

|λ|≤mY +mY 0

∫ {
DλH(Ȳ )

}{
DλH(Ȳ )

}⊤
(1 + Ȳ 2)δY 0dν(Y ).

Therefore, the proposed estimators of ξra(X) and fra(X) are

f̂ra(X) =
JX∑
j=1

θ̂j
rahj(X̄) and ϕ̂a(Y ) =

JY∑
j=1

γ̂j
ahj(Ȳ )
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where θ̂ra and γ̂ra minimizes the objective function subject to the constraint that

γ⊤
raΛX γra ≤ BX and θ⊤

a ΛY θa ≤ BY .

The regularization is not restrictive in two senses. By definition, functions in Gm,m0,δ0,B

satisfy two natural conditions that first, the bound B guarantees sufficient differentiability.
Second, it constrains function behavior outside the main region, avoiding explosive growth
at extreme values. In practice, we only care about the functions fra(X) and ϕa(Y ) within
a compact region covering the observed data, where they are expected to be smooth.
Thus, this regularization merely formalizes standard assumptions and does not impose
restrictions.

S.10.3 Detailed computation algorithms

We provide neat conclusions of our implementation algorithm in this section. Our com-
putational algorithms build on the machine learning frameworks, for example, in Prince
(2023).7 In particular, we use a neural network for nonparametric regression, learning
the conditional mean function m(x) = E[y | x] without assuming any specific parametric
form. Meanwhile, to model both the marginal density f(x) and the full conditional density
f(y | x) = f(x,y)

f(x) , we employ normalizing flows that is the chains of invertible transforma-
tions T that map a simple base distribution p0(z), such as a Gaussian, to a complex target
distribution. The training objective is the log likelihood by the change of variables,

log p(y | x) = log p0
(
T−1(x, y)

)
+ log

∣∣∣∣∣det ∂T
−1(x, y)
∂y

∣∣∣∣∣ ,
which ensures both exact density evaluation and efficient sampling. Due to their invert-
ibility and tractable Jacobian determinants, these flows can capture multimodal structures
and heteroskedasticity behavior, providing richer uncertainty quantification compared to
standard Gaussian density. Normalizing flows have been widely used for expressive density
and conditional modeling due to these properties.

We provide three algorithms to compute τ below. The three algorithms are based on
three identification equations that we proposed in Theorem 1 equation (7) and Theorem
2 equation (11). We therefore have computation algorithm. We want to know how to
calculate different values and plug them into different estimators. We can estimate by
minimizing the residual sum of squares. Although common techniques, such as Tikhonov

7Our implementation draws from the UVADL course notebooks (https://uvadlc-notebooks.
readthedocs.io/en/latest/).
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regularization (Darolles et al., 2011) or penalized sieve minimum distance (Chen and Pouzo,
2015) can also stabilize ill-posed inverse problems, we adhere to the approach of (Newey
and Powell, 2003) and (Yang et al., 2019), applying compactness constraints directly to
the approximating function spaces. Concretely, we assume fra, f̂ra ∈ GmX ,mX0,δX0,BX

and
ϕa, ϕ̂a ∈ GmY ,mY 0,δY 0,BY

a Sobolev-type space whose closure is compact under a norm en-
forcing bounded derivatives and tails.

In practice, when we approximate fra(X) and ϕa(X) by basis expansions f̂ra(X) =∑JX
j=1 θ̂

j
rahj(X̄) and ϕ̂a(Y ) = ∑JY

j=1 γ̂
j
ahj(Ȳ ), because the sample version of the approximation

is linear, we can estimate the γj
ra and θj

ra by minimizing the residual sum of squares

n∑
i=1

f̂(Xr,i, Yi | Ai = a,Ri = r) −
JX∑
j=1

θj
raĤ

j
ra(Xr,i, Yi)

2

. (S9)

and for the alternative integral equation

n∑
i=1

f̂(Ai = a, Yi) −
JY∑
j=1

γj
aĤ

j
a(Yi)

2

. (S10)

where to address the ill-conditioned nature of our estimation, we restrict the infinite di-
mensional functions fra(X), ϕa(Y ) as well as their sieve-estimators f̂ra(X), ϕ̂a(Y ) to lie in
a compact function space. This restriction serves as a regularization, rendering the under-
lying inverse problem well-posed. The compactness condition becomes a constraint on the
coefficient vector γ⊤

raΛX γra ≤ BX and θ⊤
a ΛY θa ≤ BY . where ΛX and ΛY are positive

definite matrices derived from integrals of basis derivatives. After getting the estimators
of f̂ra(X) and ϕ̂a(Y ), we can derive the average treatment effect by three proposed ways.

Algorithm 1 (OBCATE)
Step 1 Obtain machine learning estimators of f(X | A = a,R = 1p), f(Xr, Y | A =
a,R = 1p), for all r and a. Denote a neural network estimator of E(Y | A = a,R = 1p) by
Ê(Y | A = a,X,R = 1p) for a = 0, 1. Let f̂(Xr, Y | A = a,R = r) denote the normalizing
flows estimators of f(Xr, Y | A = a,R = r), respectively.
Step 2 Obtain a series estimator of fra(X) using Hermite polynomials,

f̂ra(X) =
J∑

j=1
θ̂j

rahj(X̄)

where
(
θ̂1

ra, . . . , θ̂
J
ra

)⊤
minimizes equation (S9) subject to the constraint θ̂⊤

raΛX θ̂ra ≤ BX .
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Step 3 For any a = 0, 1

µ̂a(A,Xr, R = r) =
∫ Ê(Y | A = 1, X,R = 1p)f̂ra(X)

f̂(Xr | A = a,R = r)
dν(Xr̄).

Step 4 Based on Theorem 2 and subsection 4.1, estimate τ by using a numerical approxi-
mation

τ̂MREG = 1
n

n∑
i=1

[µ̂1(Ai, XRi
, Ri) − µ̂0(Ai, XRi

, Ri)] .

Algorithm 2 (IJPW)
Step 1 Obtain machine learning estimators of τ(X), f(X | A = a,R = 1p), f(Xr, Y | A =
a,R = 1p), for all r and a. Let

τ̂(X) = Ê(Y | A = 1, X,R = 1p) − Ê(Y | A = 0, X,R = 1p), (S11)

where Ê(Y | A = a,X,R = 1p) denotes a neural network estimator of E(Y | A = a,R = 1p),
for a = 0, 1. Let f̂(X | A = a,R = 1p) and f̂(Xr, Y | A = a,R = r) denote the normalizing
flows estimators of f(X | A = a,R = 1p) and f(Xr, Y | A = a,R = r), respectively.
Step 2 Obtain a series estimator of ϕa(X) using Hermite polynomials,

ϕ̂a(Y ) ≈
J∑

j=1
γ̂j

a hj(Ȳ ),

where
(
γ̂1

a, . . . , γ̂
J
a

)⊤
minimizes equation (S10) subject to the constraint γ̂⊤

a ΛY γ̂a ≤ BY .
Step 3 Estimate

∫
ϕ̂a(Y )f̂(Y | A = a,X,R = 1p) dν(Y ) and then calculate the joint

propensity score

êa(X) = f̂(A = a,X,R = 1p)
P̂ (R = 1p | A = a,X)

.

for a = 0, 1.
Step 4 Calculate the inverse joint propensity weighting (IJPW) estimator:

τ̂IJPW = 1
n

n∑
i=1

[
Ai I{Ri = 1p}Yi

ê1(Xi)
− (1 − Ai) I{Ri = 1p}Yi

ê0(Xi)

]
. (S12)

Algorithm 3 (Doubly Robust)
Step 1 Follow the steps 1-3 in Algorithm 1-2.
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Step 2 Based on the doubly robust estimator given in equation (17) or (18),

τ̂AIJPW = 1
n

n∑
i=1

µ̂1(Ai, XRi
, Ri) − µ̂0(Ai, XRi

, Ri)

+ Ai I{Ri = 1p} [Yi − µ̂1(Ai, XRi
, Ri)]

ê1(Xi)

− (1 − Ai) I{Ri = 1p} [Yi − µ̂0(Ai, XRi
, Ri)]

ê0(Xi)

. (S13)

S.10.4 Choice of tuning parameters

When implementing the estimator, we need to carefully balance several tuning parameters:
the number of Hermite polynomial terms J , the regularization bound B. Choosing larger
values for J and B improves the estimator’s ability to closely approximate the true function.
On the other hand, if J and B become too large, we introduce excessive variance into our
estimates. Prior work by Chen and Pouzo (2012) and Chen and Christensen (2018) provides
theoretical guidance on how these parameters should scale with sample size in the context of
penalized sieve minimum distance estimation. In practice, we recommend selecting tuning
parameters using data-driven techniques, such as cross-validation, and complementing this
approach with sensitivity analyses to assess the robustness of the results under different
parameter choices.

S.11 Proof of Theorem 7

In this proof, we verify two essential properties of the influence function. First, we show that
it satisfies the geometric characterization both for the parameter of interest and the nuisance
parameter. Second, we demonstrate that the influence function lies in the tangent space.
Together, these two parts establish that the influence function is the efficient influence
function, achieving the optimal behavior with respect to both components of the parameter
space.

S.11.1 Setting

Let the observed data be denoted by O = (A, XR, Y, R) where Y is always observed, and R
is the missingness indicator vector specifying which components of the confounder vector
X are observed. The notation XR refers to the subvector of X corresponding to those
components for which R indicates observation. We define the full data as Z = (A,X, Y,R),
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which is not fully observed when some entries of X are missing. We assume outcome-
independent missingness, R ⊥ Y | A,X. We also assume a bridge restriction, there exists
a measurable function ϕra(Y ) such that for each missingness pattern r and treatment level
a,
∫
ϕra(Y ) f(Y | A = a,X,R = r) dν(Y ) = 1/πr(a,X), where πr(a,X) := P (R = r | A =

a,X). Additionally, we impose extra conditions on certain parts of the distribution, as
specified in Assumptions 5 and 7.

Let fθ(Z) satisfying the assumptions described above be a regular parametric submodel,
with the true density given by f = f0 at θ = 0. A common choice of submodel for
nonparametric P is, for some mean-zero function h : Z → R,

fθ(Z) = f(Z){1 + δ h(Z)},

with respect to the dominating measure ν, where ∥δ∥∞ ≤ M < ∞ and |θ| < 1/M so
that fθ(Z) ≥ 0 ν-almost surely. By the outcome-independent missing not at random
assumption, the full-data score decomposes as

sθ(Z) = sθ(A,X) + sθ(Y | A,X) + sθ(R | A,X, Y ),

= sθ(A,X) + sθ(Y | A,X) + sθ(R | A,X),

where each term is the score for the corresponding component of the full-data likelihood.
We adopt a slightly different decomposition from Jiang et al. (2022) because the score
S(A,X) is enough for characterizing the efficient influence function. Specifically,

sθ(A,X) = ∂

∂θ
log fθ(A,X), sθ(R | A,X, Y ) = ∂

∂θ
logPθ(R | A,X, Y ),

sθ(Y | A,X) = ∂

∂θ
log fθ(Y | A,X), sθ(R | A,X) = ∂

∂θ
logPθ(R | A,X).

These score components satisfy the zero-mean property. For additional notation, we use
a dot to denote the partial derivative with respect to θ. For example, τ̇θ(A,XR, R) =
∂
∂θ
τθ(A,XR, R), where the derivative is taken along the parametric submodel.
We rely on the complete-case pattern 1p, which is the mask that reveals all required

entries of X. For any observed data point O, we write

φ(O) = h(A,XR, R) + I{R = 1p}ρ(A,X, Y ),
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where

h(A,XR, R) := µ1(A,XR, R) − µ0(A,XR, R) − τ,

ρ(Y,A,X) := A

e1(X) [Y −m1(X)] − 1 − A

e0(X) [Y −m0(X)]

= A

e1(X) [Y − µ1(A,XR, R)] − 1 − A

e0(X) [Y − µ0(A,XR, R)].

The extra equality in the second equation holds because R = 1p determines the value of φ.

S.11.2 Semiparametric efficiency bound

As shown in Tsiatis (2006), every regular asymptotically linear estimator admits the Riesz
representation, d

dθ

∣∣∣∣
θ=0

τθ = E [φ(O)sθ(O)]. To establish efficiency, one must further show
that this influence function lies in the model’s tangent space. The extra constraint requires
that for each a, there exists a function ϕa such that
∫
ϕa(Y ) f(Y | A = a,X,R = 1p) dν(Y ) = 1

π(a,X) , π(a,X) = P(R = 1p | A = a,X),

and so does the submodel,
∫
ϕa,θ(Y ) fθ(Y | A = a,X,R = 1p) dν(Y ) = 1

πθ(a,X) , πθ(a,X) = Pθ(R = 1p | A = a,X).

Differentiating this constraint with respect to θ on both sides gives the linear constraint on
the scores

πθ(a,X) = Λsθ
(a,X) (S14)

where Λsθ
(a,X) := −πθ(a,X)E

[
ϕ̇a,θ(Y ) + ϕa,θ(Y ) sθ(Y | A = a,X) | A = a,X

]
. Note we

can have ϕ̇a(Y ) be the unique solution in sθ(R = 1p | A = a,X) |θ=0= Λsθ
|θ=0 because

f(Y | A,X,R = 1) is complete in Y and Y ⊥⊥ R | A,X.
The observed data tangent space can be defined as the set of linear operators acting on

the full data scores (Bickel et al., 1993; Robins et al., 1994; Zhang and Tchetgen Tchetgen,
2022). For instance, Theorem 7.1 in Tsiatis (2006) provides a useful reference, where
the full data is instead defined as (A,X, Y ) rather than Z = (A,X, Y,R), so the MAR
assumption is required. See Lemma S15 for an explanation of this. Therefore, starting
with the treatment confounder score s(A,X), we can set the operator as (ignoring the
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parameter θ for simplicity, since it does not affect the result)

TO,1[s(A,X)] := E [s(A,X) | O] =
∑

r

I{R = r}E [s(A,X) | A,XR, Y, R = r] .

For the outcome score s(Y | A,X), the operator is defined as

TO,2[s(Y | A,X)] := E
[
s(Y | A,X) + I{R = 1p}Λs(A,X) | O

]
,

which can be rewritten as

TO,2[s(Y | A,X)] = I{R = 1p}
[
s(Y | A,X) + Λs(A,X)

]
+
∑

r

I{R ̸= 1p}E[s(Y | A,X) | A,XR, Y, R = r]

where E[s(Y | A,X) | A,X, Y,R = 1p] = s(Y | A,X) and E [Λs(A,X) | A,X, Y,R = 1p] =
Λs(A,X). And finally,

TO,3[s(R | A,X)] =
∑

r

I{R ̸= 1p}E[s(R | A,X) | A,XR, Y, R = r]

The observed data tangent space, obtained as the closure of the scores of regular sub-
models under the imposed constraints, is given by

TO =
{
TO,1[g(A,X)] + TO,2[g(A,X, Y )] + TO,3[g(A,X,R)] :

E[g(A,X)] = 0,E[g(A,X, Y ) | A,X] = 0,E[g(A,X,R) | A,X] = 0, g(A,X, Y ) ∈ H
}cl

=
{
TO,1[g(A,X)] + TO,2[g(A,X, Y )] + TO,3[g(A,X,R)] :

E[g(A,X)] = 0,E[g(A,X, Y ) | A,X] = 0,E[g(A,X,R) | A,X] = 0
}cl

where the operator cl denotes the closure of a set in the Hilbert space L2(P ), and H ={
a sθ(Y | A,X) : fθ(Y | A,X) satisfies Assumptions 5 and 7, a ∈ R

}
is not restricted on

directions as shown by Canay et al. (2013). We can set

ǧ(A,X) = m1(X) −m0(X) − τ,
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which can be mapped onto the R indicator

TO,1[ǧ(A,X)] = E[m1(X) −m0(X) | O] − τ

= µ1(A,XR, R) − µ0(A,XR, R) − τ + ∆(A,XR, Y, R)

where

∆(A,XR, Y, R) := E[m1(X) −m0(X) | O] − E[m1(X) −m0(X) | A,XR, R].

Then, we set

ǧ(A,X, Y ) = −E[τ(X) | A,X, Y ] + E[τ(X) | A,X]︸ ︷︷ ︸
g0(A,X,Y )

+u(A,X, Y )

where u(A,X, Y ) satisfies

u(A,X, Y ) + Λu(A,X) = ρ(A,X, Y ) − g0(A,X, Y ) − Λg0(A,X)

E[u(A,X, Y ) | A,Xr, Y, R = r] = 0 for every r ̸= 1p,

E [u(A,X, Y ) | A,X] = 0.

Then ǧ(A,X, Y ) has the property that

E[ǧ(A,X, Y ) | A,X, Y,R = 1] = ǧ(A,X, Y ),

E[ǧ(A,X, Y ) | A,Xr, Y, R = r] = −∆(A,Xr, Y, r).

We thus have φ(O) = TO,1[ǧ(A,X)] + TO,2[ǧ(A,X, Y )]. Therefore, φ(O) ∈ TO.

S.12 Auxiliary lemmas and extra results

This subsection consolidates several key results briefly discussed in the main paper, along
with lemmas that are utilized across various proofs.

Lemma S9. Let Ûn be an estimator of the target function U , and define

∆n := ∥Ûn(X) − U(X)∥2.

Let rn be a positive sequence. Then:
(a) If E (∆2

n) = O (r2
n) , then ∆n = Op (rn) .

(b) If E (∆2
n) = o (r2

n) , then ∆n = op (rn) .

76



Proof. By assumption E (∆2
n) ⪯ r2

n, where an ⪯ bn if an = O(bn). Then by Markov’s
inequality

P (∆n > Mrn) = P (∆2
n > M2r2

n) ≤ E (∆2
n)

M2 r2
n

⪯ M−2.

Choosing M large enough such that M−2 < ε yields

P (∆n > M rn) ⪯ ε,

which implies ∆n = Op(rn). The little-op case is analogous.

Lemma S10. Under Assumptions 1-4,

µa(A,X,R = 1p) = E[Y (a) | X]

for any a = 0, 1.

Proof. Assumptions 1-4 ensure the conditional expectation is well defined. Recall µa(A,XR, R) :=∫
E(Y | A = a,X)f(XR̄ | A,XR, R) dν(XR̄) then we have

µa(A,X,R = 1p) = E(Y | A = a,X) = E[Y (a) | X]

where the first equality is by definition of µa(A,XR, R) and the second equality is from
Assumption 3.

Lemma S11. Under Assumptions 1-4,

E{f(X)A I{R = 1p} [Y − µ1(A,X,R)]} = 0

E{f(X)(1 − A) I{R = 1p} [Y − µ0(A,X,R)]} = 0

for any Borel measurable function f .

Proof. E{f(X)A I{R = 1p} [Y − µ1(A,X,R)]} = E{f(X)A I{R = 1p} [Y − µ1(A,X,R =
1p)]} because of I{R = 1p}. By Lemma S10 and the law of iterated expectation, it is equal
to,

E [E (f(X)A I{R = 1p} {Y − E[Y (1) | X]} | A,X)]

= E { f(X)AE ( I{R = 1p} {Y − E[Y (1) | X]} | A,X)}

= E {f(X)AE ( I{R = 1p} {Y − E[Y (1) | X]} | A = 1, X) P(A = 1)} .
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Next, we observe

E ( I{R = 1p} {Y − E[Y (1) | X]} | A = 1, X)

= E { I{R = 1p}Y − I{R = 1p}E[Y (1) | X] | A = 1, X}

= E ( I{R = 1p}Y | A = 1, X) − E { I{R = 1p}E[Y (1) | X] | A = 1, X}

= E ( I{R = 1p} | A = 1, X)E (Y | A = 1, X) − E { I{R = 1p} | A = 1, X}E[Y (1) | X]

= 0,

where the third equality is by Assumption 3 and E[Y (1) | X] is a function of X. Hence,

E{f(X)A I{R = 1p} [Y − µ1(A,X,R)]} = 0.

Lemma S12. Under Assumptions 1-4, for τ(Z) and ψ(Z) in (S2) and (S3), we have
E[τ(Z)ψ(Z)] = 0 and E[ψ(Z)] = 0.

Proof. E[ψ(Z)] = 0 holds by Lemma S11 by setting f(X) = 1
ea(X) for

E{f(X)A I{R = 1p} [Y − µ1(A,X,R)]} = 0,

E{f(X)(1 − A) I{R = 1p} [Y − µ0(A,X,R)]} = 0,

respectively. We also have E[τ(Z)ψ(Z)] = 0 by noticing

µa(A,X,R = 1p) = E[Y (a) | X]

from Lemma S10 and set f(X) = E[Y (a)|X]
ea(X) .

Lemma S13. Let (Ω,F , P ) be a probability space, Z ∈ L2(Ω,F , P ), and G ⊆ H ⊆ F be
σ-fields. Then Var

(
E[Z | H]

)
≥ Var

(
E[Z | G]

)
.

Proof. This is an immediate consequence of the law of total variance. See Theorem 5.1.1
in Durrett (2019).

Lemma S14. Let {Xλ : λ ∈ Λ} be a family of integrable random variables on a probability
space (Ω,F , P ) which is uniformly integrable, i.e., limB→∞ supλ∈Λ E

[
|Xλ| I{|Xλ| > B}

]
=

0. Let Gλ ⊆ F be any sub-σ-algebra (which may depend on λ). Then the family of condi-
tional expectations {E[Xλ | G] : λ ∈ Λ} is also uniformly integrable.

Proof. This is immediate from the discussion of Chapter 14 in Williams (1991).
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Lemma S15. The parametric submodel observed-data score with respect to θ is given by

sθ(A,Xr, Y, R = r) = E[sθ(A,X, Y,R = r) | A,Xr, Y, R = r]

Proof. The density for the observed data is

fθ(A,Xr, Y, R = r) =
∫
fθ(A,X, Y,R = r)dν(Xr̄)

and the log-likelihood for the observed data is

log fθ(A,Xr, Y, R = r) = log
∫
fθ(A,X, Y,R = r)dν(Xr̄).

Therefore, by definition, the score with respect to θ is

sθ(A,Xr, Y, R = r) = ∂

∂θ
log fθ(A,Xr, Y, R = r) |θ=θ0

= ∂

∂θ
log

∫
fθ(A,X, Y,R = r)dν(Xr̄) |θ=θ0 .

By the chain rule and the fundamental theorem, we find that the score is
∫ ∂

∂θ
fθ(A,X, Y,R = r)dν(Xr̄) |θ=θ0∫
f(A,X, Y,R = r)dν(Xr̄)

=
∫ ∂

∂θ
fθ(A,X, Y,R = r)dν(Xr̄) |θ=θ0

f(A,Xr, Y, R = r)

=
∫
sθ(A,X, Y,R = r)f(A,X, Y,R = r)dν(Xr̄)

f(A,Xr, Y, R = r)

where the second equality is from dividing and multiplying by f(A,X, Y,R = r). Finally,
it is equivalent to
∫
sθ(A,X, Y,R = r)f(Xr̄ | A,Xr, Y, R = r)dν(Xr̄) = E[sθ(A,X, Y,R = r) | A,Xr, Y, R = r].
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