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Abstract

Finite mixtures of multinomial logit models can be used to capture consumer choice het-

erogeneity across multiple markets when only aggregate consumer choices per market are

available. A motivating example is a nested logit where the composition of each mixture

component (each nest of alternatives) is unknown a priori. We show that in order to iden-

tify these models it suffices to require that each mixture component includes at least two

component-exclusive alternatives. We refer to our assumption as the pure-alternatives con-

dition, and we argue it is a natural extension of the anchor-word assumption used commonly

in nonnegative matrix factorization problems in machine learning. Our identification result

enables a consistent two-step estimator as the number of consumers, markets, and alterna-

tives grow large. Applying this framework to the U.S. vehicle market, we find that consumer

heterogeneity does not yield substitution patterns between electric and internal combustion

engine vehicles, suggesting consumer segments are distinctly aligned with specific vehicle

types without crossover substitution.

Keywords: discrete choice, finite mixtures, machine learning.
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1 Introduction

In this paper, we study Finite Mixtures of Multinomial Logit Models (FML). These are categor-
ical finite mixture models, where each mixture component arises from a multinomial discrete
choice model with observed and unobserved endogenous characteristics and an idiosyncratic er-
ror term that follows a standard Type-1 extreme value distribution. The goal of the FML model
is to identify the mixing distributions (the proportions of subpopulations that share mixture com-
ponents) and to estimate the corresponding preference parameters in each of the finitely many
mixture components. Unlike mixed logit methods, which assume a known distribution of sub-
populations maximizing utility across all alternatives, FML uncovers latent subpopulations with
unknown memberships who may optimize utility over an unknown subset of alternatives. This
provides a powerful framework for analyzing hidden heterogeneity in choice behavior.

Mixture models are widely used in economics and other fields (Compiani and Kitamura,
2016; McLachlan et al., 2019), offering solutions when a single distribution cannot capture the
complexity of the observed data. Finite mixtures, particularly, provide a simple model for ana-
lyzing complex data structures. However, identifying and estimating these models in our setting
presents two important challenges. First, only aggregate data, such as market shares, are observed
rather than individual choices. Second, membership in latent subpopulations is unobserved, com-
plicating the assignment of choices to specific mixtures. In this paper, we provide identification
criteria and estimation strategies for FML models to address these issues.

In this paper, we make two contributions to the literature. First, we show that the existence of
pure alternatives—alternatives that are specific to a mixture component—can be used to identify
the parameters of the model, even when no individual-level data are available. Second, we in-
troduce a novel two-step procedure for estimating Finite Mixtures of Logit Models (FML) using
aggregate data.

The two-step procedure begins by assuming the existence of instrumental variables that shift
the observed endogenous variables. Then, the variation generated by the instrumental variables—
along with the pure alternatives assumption and the multinomial logit structure—ensures that the
log-share difference between pairs of pure alternatives within the same mixture component satisfy
certain linearity assumption (as a function of the differences in the observed endogenous vari-
ables). Consequently, a nonparametric functional form test can be used to estimate the identity
of the pure alternatives. The nonparametric test we use in the paper is based on the work of Fan
and Li (1996) and leverages the Independence of Irrelevant Alternatives (IIA) property in each
mixture component. Novel use of concentration inequalities helps derive a tuning parameter that
guarantees that pure alternatives can be selected with high probability. The nonparametric test
is applied to the residuals of pairwise regressions in which the outcome variable is the log-share
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difference between a pair of alternatives, and the regressor of interest is the endogenous vari-
able. These regressions are estimated by two-stage least squares (2SLS). In the second stage, the
suggested estimation procedure recovers mixture weights using the identified pure alternatives.

The identification assumption proposed in this paper is an extension of the anchor-word as-
sumption (or more generally the separability condition) used commonly in nonnegative matrix
factorization problems in machine learning (Donoho and Stodden, 2003; Arora et al., 2012a,b).
In the context of topic models for text data, anchor words are unique terms associated exclusively
with specific topics (Bing et al., 2020b,c; Ke and Wang, 2022).1 In our model, pure alternatives
are alternatives that are specific to each mixture component.

A notable feature of FML is that—beyond the pure alternatives and the multinomial logit
structure—its estimation does not require any additional substantial information about the mix-
ture components. In the context of nested logits (which are a particular case of the FML), this
means that it is not necessary to pre-specify the nesting of alternatives, a major departure from
traditional models (Nevo, 1998; Train, 2009; Miller et al., 2021; Fosgerau et al., 2024). We
also think that the FML model could be useful in the context of the literature on consideration
sets (Manski, 1977; Swait and Ben-Akiva, 1987; Abaluck et al., 2020; Barseghyan et al., 2021a,b;
Barseghyan and Molinari, 2023; Abaluck and Adams-Prassl, 2021; Agarwal and Somaini, 2022).
Broadly speaking, this literature studies models where decision-makers consider only a subset of
the available alternatives when making choices. While traditional logit models assume that all
available options are considered, decision-makers often evaluate only a smaller subset (this sub-
set is called the consideration set). The identification arguments used in this paper are different
to the ones currently used in this literature. Moreover, theoretically speaking, our framework can
allow for the consideration sets to depend on observed (exogenous and endogenous) covariates
and also unobserved characteristics.

We demonstrate the efficacy of this estimation approach using a Monte Carlo simulation and
then apply the method to an empirical application: estimating demand in the US electric vehicle
market using yearly data from 2011 to 2020. The algorithm classifies two groups: Electric Ve-
hicles (EVs) and Internal Combustion Engine (ICE) vehicles, representing two pure alternative
pairs. Results reveal no significant substitution pattern between EVs and ICEs, with substitu-
tion declining further when incorporating second-choice data, as observed by Xing et al. (2021).
These findings support the consideration set literature over traditional nested logit models, which
typically assume positive substitution patterns among nests.

1The separability assumption is also used in other fields beyond the analysis of text data—for example, the “pure-
node” assumption in community detection (Airoldi et al., 2008; Mao et al., 2017) and the “pure pixel” assumption in
hyperspectral imaging (Ma et al., 2013). This shows the broad applicability of separability concepts across diverse
contexts.
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This paper also connects to machine learning approaches that incorporate sparsity-like as-
sumptions in economic models. Unlike post-LASSO methods (Belloni et al., 2012), which use ℓ1

penalties, the clustering method proposed here recovers sparse signals while enhancing compu-
tational efficiency and interpretability. Using pairwise comparisons, our approach improves the
computational complexity of Bonhomme and Manresa (2015), capable of dealing with nested
logit models. In contrast, our method accommodates overlapping structures and an unknown
number of types. The identified sparse signals serve as anchors, enabling the recovery of high-
dimensional parameters within logit models featuring finite mixtures. Furthermore, the stepwise
procedure (Kozbur, 2017; Bing et al., 2020a) contrasts with the EM algorithm, yielding inter-
pretable results due to its inherent sparsity. This is particularly evident when pure alternatives are
identified, offering a straightforward and transparent framework for understanding the mixture
components and their underlying data structures.

The paper is organized as follows: Section 2 discusses the settings of FML, Section 3 presents
the model assumptions and identification strategy, Section 4 details the estimation methods, Sec-
tion 5 offers empirical evidence, and Section 6 explores model extensions. Section 7 concludes,
with detailed proofs provided in the appendix.

2 Setting

2.1 General notation

The following notation will be used in the paper. The set {1, . . . , n} is denoted by [n]. For a
generic set S , we define |S | to be its cardinality. For a generic vector v ∈ Rd, we denote ||v||q to be
the vector’s lq norm for q = 0, 1, 2, . . . ,∞, and diag(v) to be a d×d diagonal matrix with diagonal
elements equal to v.

2.2 Model

A decision maker n in market t ∈ [T ] selects a single good from a set of alternatives j ∈ [J]. In
contrast to the framework in McFadden (1972) and Berry (1994), the decision maker is character-
ized by a random type θ ∈ [K]. A decision maker with type θ only chooses alternatives belonging
to Jθ ⊆ [J].2 As is common in applications, we assume decision makers observe market-level
characteristics

Xt := (xt, pt, ξ
u
t )

2The decision maker may either consciously select this nest or automatically narrow her choices based on limited
consideration. In the second stage, she makes a final choice from alternatives within this selected subset.
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where xt = (x1t, . . . , xJt) represents exogenous observed characteristics with x jt ∈ Rd−1, pt =

(p1t, . . . , pJt) denotes endogenous observed characteristics with p jt ∈ R, and ξu
t = (ξu

1t, . . . , ξ
u
Kt)

captures unobserved type-market characteristics, with each ξu
kt = (ξu

k1t, . . . , ξ
u
kJt) where ξu

k jt ∈ R
for k ∈ [K]. We refer to p jt as the price correlated with the structural errors ξu

t .3 The superscript
u indicates that these unobserved characteristics have not been normalized to have mean zero
through fixed effects. When d = 1, we allow for no observed exogenous covariates.

The conditional indirect utility of a decision maker n from choosing alternative j from nest
Jθ in market t is represented as vnθ jt where we adopt the multinomial logit model, given by

vnθ jt := x⊤jtβθ − αθp jt + uθ j + λθξ jt︸                           ︷︷                           ︸
δθ jt

+ϵnθ jt

with heterogeneous coefficients γθ = (βθ, αθ) ∈ Bd in the different mixtures.4,5λθ ∈ Λ is a user-
specific/estimated variable explaining the relative utility of the unobserved quality, ξ jt. The id-
iosyncratic preference shock to decision maker n, denoted as ϵnθ jt, is assumed to follow an inde-
pendent Type I extreme value distribution.6 The mean utility of product j for consumers of type
θ is δθ jt and define δθt := (δθ1t, · · · , δθJt).

The choice probability of product j in market t, denoted by s jt, represents a single consumer’s
choice behavior, averaged over consumer types, idiosyncratic shocks, and other factors not cap-
tured in Xt. Derived from utility maximization, s jt is given by

s jt :=E
(
sn jt | Xt

)
= E

[
E

(
sn jt | θ,Xt

)
| Xt

]
=

∑
k∈[K]

P(θ = k | Xt)P
(
argmaxi∈Jθvnθit = j | θ = k, δθt

)
, (1)

where sn jt(θ,Xt) := 1{argmaxi∈Jθvnθit = j} abbreviated here as sn jt and P(θ = k | Xt) represents the
probability distribution of consumer types in market t, assumed homogeneous across consumers.
The choice probabilities with simplified notation are

s jt =
∑
k∈[K]

πkt s j|kt (2)

3The results can easily be generalized to accommodate multidimensional endogenous variables, though we focus
here on the common practice of a single endogenous variable.

4The model is also able to include alternative-type specific coefficients where x⊤jt = (1{ j = 1}x⊤t , · · · ,1{ j = J}x⊤t ),
and βθ = {βθ1, · · · , βθJ}. We leave the identification of such a problem into extensions.

5The fixed effects might be redundant by replacing the alternative-type specific fixed effects uθ j ∈ U by setting
the dummy variables as observed characteristics

∑
i∈[J] uθ j1{ j = i} but we include the fixed effects here since the

identification strategies for the alternative specific coefficients are different.
6Our model also extend to vnθ jt = x⊤jtβθ − αθp jt + λθξ jt + eθ jt + ϵnθ jt with eθ jt independent over types.
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where πkt := P (θ = k | Xt) and s j|kt :=
1Jk ( j)eδk jt∑

i∈Jk
eδkit

.7 The indicator function, 1Jk( j), takes the value
1 if and only if j ∈ Jk. We refer to this model for aggregate market data as a Finite Mixture of
Logit Models (FML).

We will show that the FML models simplify the estimation process by allowing for a straight-
forward interpretation of choice probabilities and facilitating the incorporation of observed and
unobserved factors affecting the decision-making process. Due to several examples below, such
a semi-parametric simplification is still practical and useful. 8

Challenges for Identification: Identifying the parameters of model (1) nonparametrically
poses significant challenges. First, the categorization of alternatives into nests is not directly ob-
servable, preventing a straightforward mapping between utilities and market shares, as in Berry
(1994). Even when nests are known, the unobserved random vectors ξθt complicate identifica-
tion. In the Appendix I.2, we provide a constructive example illustrating this issue. Some models
simplify the identification by ignoring unobserved product-specific characteristics (Abaluck and
Adams-Prassl, 2021; Aguiar and Kashaev, 2019), while recent works incorporate these unob-
served characteristics (Abaluck et al., 2020; Agarwal and Somaini, 2022). For example, Abaluck
et al. (2020) use a one-to-one mapping and the connectivity assumption from Berry and Haile
(2014), where changes in one product’s utility affect all others, while Agarwal and Somaini
(2022) assume two sets of instruments: one affecting the endogenous variable and another in-
fluencing consideration sets.

We address these unobserved characteristics with different identification assumptions and
strategies. A key assumption we employ is the specific choice probability of the logit format
conditional on type, which aids in distinguishing whether observed variation originates from
preferences or the consideration set. This additional assumption enhances our ability to disentan-
gle these sources of variation with only one set of instruments, thus advancing the identification
strategy for the model.

7We have

P(argmaxi∈Jk
vnθit = j | θ = k, δθ jt) = P(argmaxi∈Jk

vnkit = j | θ = k, δk jt)

= P(δk jt + ϵnk jt > δkit + ϵnkit ∀i , j | θ = k, δk jt)

=
eδk jt∑

i∈Jk
eδkit

, ∀ j ∈ JK .

8Note that we don’t consider outside options here. Still, similar to the nested logit model (Miller et al.,
2021), we can consider the outside option as belonging to a distinct type 0 nest J0, solely comprising outside
options. For the outside option sn0t = 1 if θ = 0 and sn0t = 0 if θ , 0, we have E

(
sn jt | θ , 0,Xt

)
=

E
[
E

(
sn jt | θ, θ , 0,Xt

)
| θ , 0,Xt

]
=

∑
k∈[K] Pt(θ = k | θ , 0)P

(
argmaxi∈Jθvnθit = j | θ = k, δθt

)
=

s jt

1−s0t
.
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2.3 Examples

This subsection provides two primary examples closely related to our approach for identification,
estimation, and empirical applications.9

Example 1 (Nested Logit) A logit model has the assumption of independence of irrelevant al-
ternatives (IIA). In detail, the proportions of the shares of two alternatives only depend on their
characteristics (Train, 2009). As a result, logit models exhibit substitution patterns where an
increase in the price of one alternative may not increase the shares of the most similar item sig-
nificantly.

The nested logit addresses some of these issues. By adjusting the distribution of the error
terms. Consumers select a nest with similar alternatives first and then alternatives within the nest.
Partition J as {J1, . . . , JK}. Let θ : [J]→ [K] be the function that assigns each alternative j to the
index of the partition that contains it; that is, j ∈ Jk if θ( j) = k. The share formula becomes

s jt =
(
∑

i∈Jθ( j)
e

δ̃it
σθ( j) )σ

θ( j)

∑K
l=1(

∑
i∈Jl

e
δ̃it
σl )σl

e
δ̃ jt
σθ( j)∑

i∈Jθ( j)
e

δ̃it
σθ( j)

= πθ( j)ts j|θ( j)

where δ̃ jt = x jtβ+u j+ξ jt with σk < 1. The nested logit, therefore, is a special case of (2), and our
model has more flexibility on the coefficients and allows overlapped nests to exist. Moreover, our
specification admits our model to fit into the framework of the generalized nested logit proposed
in Wen and Koppelman (2001) by setting the fixed effects properly. Most importantly, we do not
require the “nests”, and their numbers are known.

Example 2 (Logit with Limited Consideration) Limited consideration models (Abaluck and
Adams-Prassl, 2021) assume

s j(pt) =
∑

k

πk(pt)s∗j(pt | Ck), (3)

where s j(pt) is the observed probability of good j being bought given market prices pt. πk(pt)
gives the probability that the set of goods Ck is considered given observable characteristics.
s∗j(pt|Ck) gives the probability that good j is chosen from the consideration set Ck. If the s∗j(pt|Ck)
satisfies a logit model, we will demonstrate that it aligns with our framework. The case is unique
in terms of the identification compared to Berry (1994) in the sense that in reality, if certain

9Although the FML method extends to the topic model with covariates (as discussed in Appendix H), this model’s
identification lies outside the paper’s current scope.
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product types are not considered, the share of some products might be zero.

3 Identification

This section establishes the identification of model (2) under two scenarios. First, when the nests
of types are disjoint, meaning Jk ∩ Jk′ = ∅ for any k , k′. Second, when overlapping nests
occur—i.e., if there exists k , k′ such that Jk ∩ Jk′ , ∅—, but any pair of types for which
there is an overlap exhibits different price sensitivity; i.e., αk , αk′ . If either of these scenarios
holds, we say that our model has separating types. The primary identification assumption in this
section excludes the case where a single nest contains all alternatives. The treatment of such a
nest, as well as overlapping nests with possibly identical price coefficients (and thus the formal
discussion of separating types), is deferred to Section 6.

3.1 Identification assumptions

Definition 1. An alternative j ∈ [J] is said to be a pure alternative for type k ∈ [K] if (a)

1Jk( j) = 1 and (b) 1Jk′ ( j) = 0 for any k′ , k.

The main assumption we use to identify the FML model in Equation (2) is the following:

Assumption 1. (Pure Alternatives) For any type k ∈ [K], at least two pure alternatives exist for

each type k.

In words, the pure alternatives assumption requires that for each type there exist at least two
alternatives in his/her choice set that are not considered by any other type k. Our assumption is an
extension of the “separability” condition used in the literature studying nonnegative matrix factor-
ization problems; for example, see Theorem 4.37 in Gillis (2020). To the best of our knowledge,
analogs of the separability condition have not been used to identify the type of models considered
in this paper, which feature unobserved heterogeneity ξ jt.10

We also assume there is a vector of instrumental variables zt = (z1t, . . . , zJt) with z jt ∈ R for
the prices. For simplicity of the argument, we condition on an arbitrary value of xt ∈ R(d−1)×J and
suppress it to fixed effects with type-specific fixed effect as Berry and Haile (2014) to u ∈ UK×J.
The following assumptions apply to the instrumental variables.

Assumption 2. (Instrumental Variable) (a) For all j ∈ [J], E(ξ jt | zt) = 0. (b) For all j, j
′

∈ [J],
E(p jt − p j′ t | zt) is not a constant almost surely.

10The closest analog of the separability assumption in the context of models with limited consideration appears
in Aguiar and Kashaev (2019), but in their framework, there are no unobservable characteristics and need only one
alternative per type

8



We mainly consider cost shifters; for example, Petrin (2002) uses plant closures and en-
try costs to handle price endogeneity in the demand estimation, while other studies have relied
on various supply-side instruments; for instance, cost-shifting variables such as fuel prices and
emission standards, as employed in Train and Winston (2007), and tariffs and exchange rates, as
demonstrated in Goldberg (1995), provide valid instruments by shifting costs across models with-
out directly affecting consumer preferences, and may be applicable in this context by interacting
with an alternative-specific dummy variable.11

Finally, we impose an extra condition to exploit Assumption 1 for identification. For any
alternative j ∈ [J], define θ( j) := {θ ∈ [K] : 1Jθ( j) > 0}. That is, θ( j) collects all types with
alternative j in their consideration set. Define also the function I(·) : [K] → 2[J] that assigns to
each type its pure alternatives. That is, I(θ) denotes all the alternatives only considered by type θ.
With the definition, the collection of sets of pure alternatives is given by I0 := {I(1), · · · , I(K)}
and the sets of all pure alternatives is given by I0 := ∪K

k=1I(k). For two alternatives j and j
′

, define
the log share difference as

∆ j j
′

st := log s jt − log s j′ t.

Figure 1: Sufficient condition for the dependence of irrelevant alternatives

Assumption 3. If alternatives j and j′ are not pure alternatives of the same type, then

E(∆ j j
′

st | zt) , u + aE(p jt − p j′ t | zt)

11We might use BLP-type product-level instrumental variables, where Assumption 2(b) requires that the instru-
ments affect price differences between alternatives. For example, if a firm produces two vehicles with differing
horsepower, a decrease in this difference should lead to a narrower price gap as the firm adjusts prices to align with
relative product characteristics. However, identification warrants further discussion due to the non-fixed nature of
covariates.
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for any constant a and u with positive probability.

In the two remarks below, we provide intuitively sufficient conditions to support the assump-
tion of “dependence on irrelevant alternatives,” which here, to be more precise, is that the log
share difference does not satisfy a linear format. We define

∆ j j
′
|kst := log s j|kt − log s j′ |kt

for any k ∈ θ( j) = θ( j′).

Remark 3.1. A sufficient condition ensures that Assumption 3 holds. Specifically, for any pair

of alternatives j and j′ that are not pure alternatives of the same type, and for any type k ∈

θ( j) ∪ θ( j′), there exists a sequence {z̃k, j j′
t } such that a type of shares for the pair dominant:

s jt

s j′t
| z̃k, j j′

t →
s j|kt

s j′ |kt
| z̃k, j j′

t

uniformly as t → ∞, and E(p jt − p j′t | z̃
k, j j′
t ) remains bounded as t grows. See the proof in A.1.

The first economic intuition behind this assumption is that, without loss of generality, for all

k′ ∈ θ( j)∪θ( j′) with k′ , k, we use instrumental variables to drive the utilities of pure alternatives

jk′ , j and jk′ , j′ to infinity, while holding the other utilities “fixed”, such that s j|k′ | z̃
k, j j′
t → 0

and s j′ |k′ | z̃k, j j′
t → 0. In this scenario, the only attractive alternative within type k′ is the pure

alternative jk′ so j and j′ are ignored by consumers. The second economic intuition is that the

instrument shifts πkt such that πkt = 1 almost surely, implying that πk′t = 0 for all k′ , k.

Remark 3.2. The intuitions above apply when instruments only shift preferences within a nest

or alter the probability of types. The sufficient assumption in Remark 3.1 for Assumption 3 is

common in many other setups, such as the nested logit model with pt ⊥ ξt for the simplicity of the

argument. The proof is provided in Appendix A.1. We require this assumption because a problem

arises when, in a nested logit model, the σk parameters are set to 1, making the model equivalent

to a simple Logit model. In this case, neither the number nor the distribution of mixtures can be

identified. Appendix A.1 excludes this scenario and only the pure alternatives within the same

nest satisfy the IIA assumption.

3.2 Identification of the parameters

With a known distribution of St := {st, pt, xt, zt}, our goal is to identify {θ(·), σ−1(·), π(·), αK , uI0}

where the commonly used notation σ−1(·): St → ξt recovering the unobserved qualities and the
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function π(·): St → πt obtaining the probabilities of nests. αK = (α1, . . . , αK) is the price coeffi-
cients of different types. uI0 ∈ RJ×K represents fixed effects relative to a set of pure alternatives I0

normalized to zero. As in the previous subsection, we condition on a given xt.12

With Assumptions in 3.1, we can identify the price coefficients and the number of types. For
two pure alternatives jk and j′k ∈ I(k), we have that

E(∆ jk j′k st|zt) = u + aE(p jkt − p j′kt|zt), (4)

where u = uI0
jk
−uI0

j′k
and a = αk. Equation (4) is also sufficient for pure alternatives of the same type

due to Assumption 3. Because jk and j′k are pure alternatives for type k, then θ( jk) = θ( j′k) = k

define the type. The following theorem formalizes the argument.

Theorem 1. Under assumptions 1, 2, and 3, the parameter αK in the FML is identified.

See the proof of Theorem 1 in Appendix A.2.
We can finish the identification directly if the nests do not overlap. As for overlapping nests,

we simplify notation by defining eI0
k j := 1{ j ∈ Jk}e

u
I0
k j for k ∈ [K] and j ∈ [J]. We refer to eI0

k j

as the type-alternative fixed effect of a share. We want to identify these parameters because they
characterize the vectors of fixed effects uI0 and types of alternatives θ(·). To formulate moment
conditions for estimating these fixed effects, we specify the inverse function for ξ̃ jt as:

σ−1(s̃ jt, s̃
I0
t , p jt, pI0

t ; α̃K , λK , ẽ• j, ξ̃
K
t ) = ξ̃ jt

where s̃I0
t = (s̃ j1t, · · · , s̃ jK t), pI0

t = (p j1t, · · · , p jK t), α̃K = (α̃1, · · · , α̃K), λK = (λ1, · · · , λK), ẽ• j =

(ẽ1 j, · · · , ẽK j) for j ∈ [J], ξ̃K
t = (ξ̃ j1t, · · · , ξ̃ jK t), and σ−1 is defined through the share equation:

s̃ jt =
∑

k

ẽk j s̃ jkteλk ξ̃ jt−αk p jt

eλk ξ̃ jk t−αk p jk t
. (5)

The inverse function exists due to the monotonicity of equation (5). We can show that with extra
assumption, eI0

• j is unique such that E[σ−1(s jt, s
I0
t , p jt, pI0

t ;αK , λK , eI0
• j, ξ

I0
t ) | zt] = 0. Therefore,

parameters {θ(·), u} are identified.

Assumption 4. (Full Rank) For any non-negative vectors eK , ẽK ∈ RK
+ , random vectors ζK

t , ζ̃
K
t ∈

RK
+such that E(ζt | zt) = 0 and E(ζ̃t | zt) = 0, if e , ẽ, then∑

k∈[K]

ekeζktπ∗k jt ,
∑
k∈[K]

ẽkeζ̃ktπ∗k jt

12We can identify β once u is identified
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with positive probability, where π∗k jt =
πkte

−αk p jt∑
i∈Jk

eδkit
.

Remark 3.3. We can rely on a similar sufficient assumption as Remark 3.1. For type k ∈ [K],
there exists a sequence of {z̃k, j

t } such that

π∗k jt | z̃
k, j
t >> π∗k′ jt | z̃

k, j
t

uniformly for any k′ , k.

Theorem 2. Under assumptions 1, 2, 3, and 4, the parameters {θ(·), αK , uI0} in the FML are

identified.

See the proof of Theorem 2 in Appendix A.2. If we assume the unobserved characteristics are
i.i.d., the variance of the pure alternatives can be used to identify λ here. This theorem suggests
we can identify the pure alternatives, price coefficients, and fixed effects relative to fixed impacts
of a set of pure alternatives normalized as zero by moment conditions. However, the unobserved
characteristics and probabilities of nests are still interesting for the counterfactual analysis. Next,
we will discuss how to identify them.

Identifying the ξ in the standard nested logit model is straightforward by normalizing one of
the pure alternatives in each nest to zero, which is a common practice. However, when dealing
with overlapping nests, the situation becomes more complex. Specifically, if we attempt to recen-
ter a set of pure alternatives of different types, but some of them are “connected” by overlapping
nests as zero when they are not, we introduce misspecification into the model. This misspecifi-
cation affects the probabilities associated with the nests, as the characteristics of alternatives in
other overlapping nests will now be included erroneously. Additionally, the error terms of these
alternatives will be distorted by a similar factor, complicating the identification of ξ.

Without loss of generality, we choose a specific set of pure alternatives I0 = { j1, . . . , jK}

from different nests. We define ξI0
t = {ξ j1t, · · · , ξ jK t} as a set of intermediate parameters for the

identification to reflect that they cannot be recentered as zeros. For simplicity

σ−1
jt (eI0

• j, ξ
I0
t ) := σ−1(s jt, s

I0
t , p jt, pI0

t ;αI0 , λ, eI0
• j, ξ

I0
t ).

With the intuition above and the intermediate parameters, the following theorem concludes the
identification section.

Theorem 3. Under assumptions 1, 2, 3, and 4, additionally assume the conditional distributions

s jt | t, s
I0
t , pI0

t , ξ
I0
t and p jt | t, s

I0
t , pI0

t , ξ
I0
t are known for any j ∈ J − I0, and E(ξ jt | t, s

I0
t , pI0

t , ξ
I0
t ) = 0

for any j ∈ J − I0, then parameters {σ−1(·), π(·)} in the FML are identified.

12



See the detailed proof in Appendix A.2.

Remark 3.4. Alternatively, we can also assume ξ jt are i.i.d. conditional on market t, with

E(ξ jt|t) = ιt where ιt reflects market-specific information and the preference for the inside over the

outside option.13 We have ιt canceled out in the share equation. Note the distinction between The-

orems 2 and 3: observed variable coefficients are identified from cross-market variation, while

unobserved characteristics are identified within markets.

4 Estimation

The estimation differs from the common practice after identification since the number of observa-
tions is limited while the model is high-dimensional. Specifically, the data comprises the sales of
each alternative j ∈ [J] purchased across markets t ∈ [T ]. We denote the sales and the empirical
shares by the J × T matrices Y and Ŝ . Let N represent the total number of consumers across all
markets and the empirical share Ŝ = Y

N .14 For each market t, we assume that

Y•t | (Xt, πt, θ, α, β) ∼ Multinomial(N, st), (6)

where Y•t is the t-th column of matrix Y , and ŝt = (ŝ1t, . . . , ŝJt) is the t-th column of Ŝ . We
assume Xt is an independent bounded random vector for simplicity in the statistical analysis
of this high-dimensional model. In the next section, we formalize the assumptions to provide
statistical guarantees. One immediate concern is whether a multinomial assumption aligns with
individual-level utility maximization, where sn jt | Xt represents a binary choice variable with
expectation s jt. Since the choice is mutually exclusive, the multinomial distribution is aggregate
choice probabilities under individual utility maximization, where each consumer’s binary choice
can aggregate into a multinomial outcome.

This section presents a nested two-step algorithm for estimating the identified parameters.
First, we introduce algorithms for estimating and verifying the linear functional form of log
share differences between pairs of pure alternatives. Next, we estimate all remaining parameters
using the identified pure alternatives through a simulated generalized method of moments (GMM)
approach. Nonparametric checks for linearity are particularly challenging due to the curse of
dimensionality, especially when the dimensionality of the instrumental variables is of order J.
To simplify the problem, beyond assuming data independence, we impose a stronger regularity
condition during the estimation process, where the instrumental variables for pairs are sufficient

13We omit cluster-level standard errors for simplicity, but the assumption can be extended to conditional indepen-
dence between alternatives in different clusters. We leave dependence on the covariates as future works.

14Even if markets have varying consumer numbers, with a minimum of N, the argument remains valid.
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to verify the linear specification. Formal assumptions and statistical properties are outlined and
discussed in Subsection 4.2.

4.1 Algorithms

We concentrate on (4) to recover the pure alternatives first but with variation in the exogenous
variable x,

∆ j j
′

st − (x jt − x j′ t)
⊤β − α(p jt − p j′ t) − u = λ(ξ jt − ξ j′ t), (7)

where E(ξ jt − ξ j′ t|z jt, z j′ t) = 0. The parameters β = βk, α = αk, u = uk jt − uk j′ t and λ = λk

are identical for any k ∈ θ( j). We introduce notation for the simplicity of the arguments. Given
alternatives j and j

′

, we define w j j
′

t := w jt − w j′ t for any random variable w jt. We also introduce

Z̃ j j
′

∈ RT×(d+2) where the column vector of t-th row z̃ j j
′

t = (x j j
′

t
⊤, z jt, z j′ t, 1)⊤ and X̃ j j

′

∈ RT×(d+1)

where the column vector of t-th row x̃ j j
′

t = (x j j
′

t
⊤, p j j

′

t , 1)⊤. Alternatively, we can write

∆ j j
′

st − x j j
′

t
⊤β − αp j j

′

t − u = λξ j j
′

t . (8)

Algorithm 1 estimates the sets of pure alternatives by checking the linearity of the pairwise
difference of log shares. Ideally, we rely on the conditional moment test

Φ = E[ξ̃ j j
′

t E(ξ̃ j j
′

t |z jt, z j′ t) f (z jt, z j′ t)],

and its sample analog T−1 ∑T
t=1 ξ̃

j j
′

t E(ξ̃ j j
′

t |z jt, z j′ t) f (z jt, z j′ t) as Fan and Li (1996); Li and Racine

(2023) to test the pure alternatives where ξ̃ j j
′

t instead of ξ j j
′

t indicates that ξ̃ j j
′

t , ξ jt − ξ j′t, ( j, j′)
might not be a pair of pure alternatives in the same nest. Specifically, Î0 returns a collection of
sets of pure alternatives. Meanwhile, the variation in the specific product, except for the variation
in the probabilities of the canceled-out types, can be pinned down by estimated pure alternatives.

Algorithm 2 estimates other parameters by the (conditional) moment conditions. For any
alternative j ∈ [J], there exists an unique vector eI0

• j = (eI0
1 j, · · · , e

I0
K j) > 0 and some ξI0

t =

(ξI0
j1t, · · · , ξ

I0
jK t) where E(ξI0

t | zt) = 0 such that E[σ−1(s jt, s
I0
t , p jt, pI0

t ; γK , λK , eI0
• j, ξ

I0
t ) | zt] = 0.

We use the fact that ξ jt are i.i.d, so given eI0
• j for all alternatives, the unobserved quality ξI0

t can be
estimated by the variation within the market using s jt =

∑
k eI0

k js jkte
λkξ jt+x⊤jtβk−αk p jk t/eξ jk t+x⊤jtβk−αk p jk t .

We ignore the data information of alternative j for the simplicity of the notation:

σ−1
jt (eI0

• j, I0, ξ
I0
t ) := σ−1(s jt, s

I0
t , p jt, pI0

t ; γK , λK , eI0
• j, ξ

I0
t )
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Algorithm 1 Recover a collection of sets of pure alternatives and compute group averages

Require: Matrix of empirical shares Ŝ ∈ RJ×T , matrices of exogenous covariates X j ∈ RT×(d−1),
vectors of prices p j ∈ RT , vectors of instruments z j ∈ RT , tuning parameter c0 > 0, kernel
function k(·), and bandwidth h ∈ R2

+

▷ for all j ∈ [J]
procedure Pure(Ŝ , X, p, z, c0, k, h)
Î0 ← ∅ ▷ A collection of sets of pure alternatives
l← 0 ▷ Size of Î0

K ← 0 ▷ Number of types
α̂l ← [], β̂l ← [] ▷ Initialize lists to store α̂l and β̂l

for j = 1, . . . , J − 1 do
for j′ = j + 1, . . . , J do

Calculate (α̂, β̂, û)← 2SLS estimators for specification where ŝ jt ∧ ŝ j′t > 0
Calculate ξ̂ j j′

t ← 1{ŝ jt ∧ ŝ j′t > 0}
[
∆ j j′ ŝt − (x j j′

t )⊤β̂ − α̂p j j′
t − û

]
Calculate Φ̂ = 1

T (T−1)

∑T
t=1

∑T
τ=1,τ,t ξ̂

j j′
t ξ̂

j j′
τ h−1

1 h−1
2 k

( z jt−z jτ

h1

)
k
( z j′t−z j′τ

h2

)
if Φ̂ < η then

l← l + 1
(Î0,K(·))← Merge({i, j}, Î0, l)
(α̂l, β̂l)← (α̂, β̂)

Calculate α̂K and β̂K ▷ Group averages for each type K
for k = 1, . . . ,max(K) do

α̂K
k ←

1
|{l:K(l)=k}|

∑
l:K(l)=k α̂l

β̂K
k ←

1
|{l:K(l)=k}|

∑
l:K(l)=k β̂l

return Î0, α̂K , and β̂K

function Merge(G,G0, l)
k ← 0
for g ∈ G0 do

k ← k + 1
if g ∩G , ∅ then

g← g ∪G
K(l)← k
break ▷ No need to check further

if no g ∈ G0 such that g ∩G , ∅ then
G0 ← G0 ∪ {G}

return G0, K(·)
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Algorithm 2 Estimate the probabilities of nests

Require: matrix of empirical shares Ŝ ∈ RJ×T , matrix of covariates X j ∈ RT×d−1, vectors of
prices p j ∈ RT , vectors of instruments z j ∈ RT , collection of sets of pure alternatives Î0, price
coefficient α̂, and vector of coefficients β̂ ▷ for all j ∈ [J]
procedure FixedEffect(Ŝ , X, Î0,K)
(Î0,K) = Combinations(Î0) ▷ Sets of K alternatives from K sets in Î0

{ j1, · · · , jK} ← I0

for j = 1, · · · , J; t = 1, · · · ,T do
ẑ jt ← (z j1t, · · · , z jK t, z jt)

ê = argminẽ
∑

j
∑

t
∑
τ,t

1
JT (T−1)σ̂

−1
jt (ẽ, Î0)ẑ⊤jtẑ jτσ̂

−1
jτ (ẽ, Î0)

return ê
procedure Nest(Ŝ , X)
for k = 1, · · · ,K; t = 1, · · · ,T do

π̂kt ← ŝ jkt
∑

i∈J êikeλkσ̂
−1
it +x′itβ̂k−α̂k pit/eλkσ̂

−1
jk t+x⊤jk tβ̂k−α̂k p jk t .

return Π̂
function σ̂−1(ẽ, Ĩ) ▷ ẽ ∈ RK×J

ξ jt ← 0 for ŝ jt = 0
solve

∑
j∈{J−Î0}∪I(k) ξ jt = 0 ▷ K equations

ŝ jt =
∑

k ẽk j ŝ jkte
λkξ jt+x⊤jtβ̂k−α̂k p jt/eλkξ jk t+x⊤jtβ̂k−α̂k p jk t ▷ ŝ jt > 0 and j ∈ J − Î0

return ξ

There is an estimator σ̂−1
jt (ẽ• j, ξ̃

K
t ) of the unique unobserved quality σ−1

jt (eI0
• j, ξ

I0
t ). To be specific,

ŝ jt =
∑

k

ẽk j ŝ jkte
λkξ jt+x⊤jtβ̂k−α̂k p jk t

eξ̃ jk t+x⊤jtβ̂k−α̂k p jk t
(9)

for ξ jt = σ̂
−1
jt (ẽ• j, ξ̃

K
t ) when ŝ jt > 0. 15 We rely on K equations that

∑
j∈{J−Î0}∪I(k) σ̂

−1
jt (ẽ• j, ξ̃

K
t ) = 0

to get the estimates for K unknowns in ξI0
t . ξI0

t is a function of eI0
• j and can be estimated by

Algorithm 2. These equations motivate us to estimate other parameters, such as the probabilities
of types, since

πkt =
eλkξ jk t+x⊤jk tβk−αk p jk t

s jkt
∑

i∈J eI0
kie

ξit+x⊤it βk−αk pit
.

Remarks regarding the implementation of the algorithms, including handling zero shares in two-
stage least squares (2SLS), the selection of moments for testing functional forms, and the unique-
ness of the estimates for unobserved characteristics, are provided in Appendix B.

15Without loss of generality, we assume that the pure alternatives always have shares greater than zero.
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4.2 Statistical properties

The following assumptions address the selection of pure alternatives and the non-asymptotic
property of the preference parameters of the observed covariates.

Assumption 5. (Estimation of Pure Alternatives and Preference Parameters) (a) The coefficient

spaces Bd, Λ, and U are compact subsets of Rd, R, and R, respectively. (b) There is a constant

ψ > 0 such that mink∈[K]t∈[T ] πkt > ψ. (c) The continuous and uniformly bounded random vectors

Xt are i.i.d. over market t ∈ [T ]. (d) Given any alternatives j and j′, the eigenvalues of Z j j′⊤Z j j′

T ,
X j j′⊤X j j′

T are uniformly strictly positive for any pair of alternatives j and j′. (e) For the instrumental

variables, E(xtξt) = 0 and E(ztξt) = 0, and the singular value of X̃ j j⊤Z̃ j j

n is uniformly strictly

positive for any pair of alternatives j and j′. (f) Given any alternatives j and j
′

that are not pure

alternatives of the same type, there exists a positive constant cs such that

min
a,b,u

E(E[∆ j j
′

st − x j j
′
⊤

t b − ap j j
′

t − u | z jt, z j′ t]
2) > cs.

(g) As T → ∞, hs → 0 (s = 1, 2) and Th1h2 → ∞. (h) log J = o(h1h2T ), JT log2 J = o(h1h2N).

We choose hs = 1.06σ̂sT−1/6 (s = j, j′) where σ̂s is the sample standard deviation of the
variable zs.

Theorem 4. (Pure Alternatives and Preference Parameters) Suppose Assumption 1 and 5 holds.

Choose the tuning parameter η = c0
√

log(J ∨ T )/h1h2T for some c0 > 0. With probability

1 − c1(J ∨ T )−c2 for some c1>0 and c2>0 such that

Î0 = I0

and for any 0 < ϵ < 2

P(∥γ̂K − γK∥2 > ϵ) < C1Te−C2T ϵ2
+ c1(J ∨ T )−c2 .

for some C1>0 and C2>0.

Corollary 4.1. (Consistency of Preference Parameters) Suppose Assumption 1 and 5 holds.

Choose the tuning parameter η = c0
√

log(J ∨ T )/h1h2T for some c0 > 0. Then γ̂ →p γ as

T → ∞.

We define

ξ̃K
t (ẽ) =

{
ξ̃K

t ∈ Ξ
K : ∀ j E

[
σ−1

jt (s jt, x jt, p jt) | t, s
I0
t , j ∈ {J − I0} ∪ I(k); γK , λK , ẽ• j, ξ̃

K
t , I0

]
= 0

}
.
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The two moments we rely on are

M(ẽ) =
∑

j

1
J
E

[
σ−1

jt

(
ẽ• j, I0, ξ̃

K
t (ẽ)

)
ẑ⊤jt

] [
ẑ jtσ

−1
jt

(
ẽ• j, I0, ξ̃

K
t (ẽ)

)]
,

and

ςk(ẽ) =
∑

j

1
J
E

[
σ−1

jt

(
ẽ• j, I0, ξ̃

K
t (ẽ)

)
| t, j < {J − I0} ∪ I(k)

]
.

The second one is to recover ξ̃K
t given ẽ while the first one is to identify ẽ• j based on ξ̃K

t .

Assumption 6. (Fixed Effects, Unobserved Characteristics, and Type Probabilities) (a) ξ jt are

conditionally independent given the observed data. (b) A unique eI0 satisfies M(eI0) = 0 and

ς(eI0) = 0. (c) M(·) and ς(·) are twice continuously differentiable. (d) The Hessian matrices of

M(·) and ς(·) have strictly positive minimum eigenvalues.

Theorem 5. (Fixed Effects and Unobserved Characteristics) Under Assumptions 1, 5, and 6,

choose the tuning parameter η = c0
√

log(J ∨ T )/h1h2T for some c0 > 0. For any ϵ > 0,

P(||ê − eI0 ||22 > ϵ) < C1e−C2T ϵ2
+ c1(J ∨ T )−c2 .

for some constant c1 > 0, c2 > 0, C1 > 0 and C2 > 0. And

P(|ξ̂ jt − ξ jt| > ϵ) < C1e−C2T ϵ2
+C3e−C4 Jϵ2

+ c1(J ∨ T )−c2 ,

for some constants c1 > 0, c2 > 0, C1 > 0,C2 > 0,C3 > 0, and C4 > 0.

Theorem 6. (Probability of Types) Under Assumptions 1, 5, and 6, Choose the tuning parameter

η = c0
√

log(J ∨ T )/h1h2T for some c0 > 0. for any ϵ > 0,

P(||π̂kt − πkt||
2
2 > ϵ) < C1e−C2T ϵ2

+C3e−C4 Jϵ2
+ c1(J ∨ T )−c2 .

for some constants c1 > 0, c2 > 0, C1 > 0,C2 > 0,C3 > 0, and C4 > 0.

Corollary 4.2. (Consistency of Other Parameters) Suppose Assumption 1 and 5 holds. Choose

the tuning parameter η = c0
√

log(J ∨ T )/h1h2T for some c0 > 0. Then ê →p e and Π̂ →p Π as

J ∧ T → ∞.
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5 Empirical Evidence

5.1 Simulation

This section evaluates the effectiveness of the two-step procedure in identifying pure alternatives,
estimating preference parameters, and determining the maximum distance to the fixed effects
and type probabilities using randomly generated data, excluding the outside option. We consider
three simulation settings: (1) the number of alternatives set to 30 and 150; (2) the number of
types set to 2, 3, and 5; and (3) nested logit with inclusive parameters from 0.4 to 0.6 and FML
models with a zero substitution pattern between types.

In setting (3), both nested logit and FML are applied to a non-overlapping structure, where
price coefficients are set to −1 across all types. Additionally, we explore the FML model with
overlapping nests, where price coefficients vary from −1 to −5 for five types. Nests for types are
constructed evenly across all cases. In detail, we assume that each type has two pure alternatives
for overlapping nests, with all other alternatives shared across types. The lambda parameter for
the Nested logit model is distributed evenly from 0.6 to 0.8. Prices for these alternatives are
drawn as uniform random variables ranging from 0 to 1, varying across markets.

Figure 2: Predicting Probabilities in Pure Alternative Selections

In all simulations, we set the number of consumers in each market to N = 100,000 and the
number of markets to T = 500, as the probability of recovering the pure alternatives varies across
different models from our baseline of 1,000 simulations (see Figure 2). The parameter c0 = 0.05
is selected based on prediction accuracy. We use J = 30 alternatives, with alternative-specific
fixed effects and unobserved characteristics uniformly distributed between 0 and 1, and between
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0 and 0.2. Figures 3 and 6 illustrate the nested logit and FML (without overlaps) surfaces, re-
spectively, for J = 30 and K = 3. We observe that when a pair of alternatives belongs to the same
nest, they satisfy the IIA property, whereas alternatives from different nests do not. Other data
generating processes (DGPs) exhibit similar patterns.

Figure 3: Polynomial surfaces and points for same vs. different nest pairs (FML)

(a) The same nest

(b) Different nests
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Table 1: Comparison of FML, Logit, and Nested Logit across different values of k

J = 30

FML Nested Logit Overlapping FML

k = 2 k = 3 k = 5 k = 2 k = 3 k = 5 k = 2 k = 3 k = 5

FML 1.00 1.00 1.00 1.00 1.00 1.00 (1,2) (1,2,3) (1,2,3,4,5)
Logit 0.97 0.91 0.85 1.50 1.50 1.58 1.46 1.90 2.72
Nested Logit 0.55 0.78 0.48 1.00 1.00 1.00

J = 150

Non-overlapping FML Nested Logit Non-overlapping FML

k = 2 k = 3 k = 5 k = 2 k = 3 k = 5 k = 2 k = 3 k = 5

FML 1.00 1.00 1.00 1.00 1.00 1.00 (1,2) (1,2,3) (1,2,3,4,5)
Logit 0.99 0.92 0.99 1.43 1.49 1.56 1.46 1.92 2.79
Nested Logit 0.36 -0.12 0.27 1.00 1.00 1.00
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Table 2: Summary of second choices for EV buyers (Xing et al., 2021)

Make Model Fuel type Top 1 second choice Top 2 second choice

Honda Accord Plug In Hybrid PHEV Tesla Model S Toyota Prius
Ford C-Max Energi PHEV Toyota Prius Chevrolet Volt
Ford Fusion Plug In Hybrid PHEV Chevrolet Volt Toyota Prius Plug In
Toyota Prius Plug-in PHEV Chevrolet Volt Nissan LEAF
Chevrolet Volt PHEV Toyota Prius Nissan LEAF
Fiat 500 Electric BEV Nissan LEAF Mini Cooper
Mercedes-Benz B Class Electric BEV Nissan LEAF Ford Fusion Hybrid
Ford Focus Electric BEV Nissan LEAF Chevrolet Volt
Nissan LEAF BEV Chevrolet Volt Toyota Prius
Tesla Model S BEV Nissan LEAF Audi A7
Toyota RAV4 EV BEV Nissan LEAF Tesla Model S
Chevrolet Spark Electric BEV Nissan LEAF Chevrolet Volt
Smart fortwo electric BEV Nissan LEAF Chevrolet Volt
Mitsubushi i-MiEV BEV Nissan LEAF Ford Focus Electric
BMW i3 BEV Nissan LEAF Tesla Model S

Notes: The data summary is based on the sample of 2014 EV buyers from the MaritzCX household survey data.
The table summarizes the most popular alternative vehicle choices for the households that purchased different EV
models. Top 1 second choice indicates the most frequently reported alternative choices among the buyers of a
specific EV model. Top 2 second choice reports the second most reported alternative choices for each EV model.

Table 1 presents the preference estimates from various FML and Nested Logit models. The
columns correspond to different data-generating processes (DGPs), and the rows display the re-
spective estimators. Based on 1,000 simulations, the FML estimator produces unbiased results
across all categories. Interestingly, the Logit estimator performs well overall. However, it tends
to approximate the sample average in both the Nested Logit and Overlapping FML models. The
Nested Logit estimator is accurate only when the true underlying model is Nested Logit, even
when the nest structures are correctly specified. Additionally, the simulation results show that the
estimated consumer types are accurate.

5.2 Electric vehicle market

We get vehicle sales data from Wards Automotive from year 2010 to 2020. Since the panel is
short, we focused on the models with the smallest test statistics. We concentrated on the two types
of models, noting that results for three types yield similar conclusions. The analysis focuses on
non-overlapping structures because overlapping structures produce negative price coefficients and
wide tails in the estimates due to the data size. Table 2 also includes secondary choice data from
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Figure 4: Annual market shares of different vehicle types in the U.S.
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Xing et al. (2021), demonstrating the substitution patterns among EV consumers, particularly
favoring EVs.

From the 499 models considered, we selected the top 50 models according to their shares,
which existed for 10 years between 2011 and 2020. The pure alternatives chosen correspond to
the models with the smallest test statistics, such as Nissan Titan ICE and F-Type ICE, as well as
Chevrolet Bolt EV and Sonata PHV. Therefore, we classify the discrete into two types without
overlapping nests due to the limitation of the data set. We employ a BLP-type IV, where the only
IV is the average price of all other products, excluding the pair of alternatives. We then use linear
regression

π̂1t = β0 + β1

∑
i∈J1

eδ̂it + β2

∑
i∈J2

eδ̂it

and we find non-significant substitution patterns β1 and β2 between two types.

6 Extension

6.1 Multiple tiers and full consideration

The multiple-tier nested logit model extends the standard nested logit framework to accommodate
more complex decision hierarchies. Alternatives are grouped into multiple levels or “tiers” of
nests, reflecting a hierarchy of choices. Each tier represents a different decision-making stage,
beginning with broad categories and progressing to more specific alternatives. For simplicity,
consider a two-tier model:

s jt =
∑

k1∈[K1]

π̃k1t

∑
k2∈[K2]

π̃k2 |k1t s j|k2t, (10)

where π̃k1t is the probability of type k1 ∈ [K1] in tier one, and π̃k2 |k1t is the conditional probability
of type k2 ∈ [K2] in tier two given k1. We can then express the model as:∑

k1∈[K1]

π̃k1t

∑
k2∈[K2]

π̃k2 |k1t s j|k2t =
∑

k1∈[K1]

∑
k2∈[K2]

π̃k1tπ̃k2 |k1t s j|k2t

=
∑

k2∈[K2]

 ∑
k1∈[K1]

π̃k1tπ̃k2 |k1t

 s j|k2t

=
∑

k2∈[K2]

πk2ts j|k2t,

where πk2t :=
∑

k1∈[K1] π̃k1tπ̃k2 |k1t represents the overall probability for type k2.
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An extension of this model considers a full consideration nest, where a player evaluates all
alternatives. The expression that captures this is:

s jt =
∑

k∈[K+1]

πkt s j|kt,

where K+1 represents the full consideration nest. By relying on pure alternatives that occur only
in the full consideration nest, we can transform the problem back into our classical model. Before
this transformation, we assume that ξ jK+1t is independent of ξ j′K+1t for other pure alternatives in the
market, which allows us to identify ξJK+1t in the first stage. Then, observe:

s jt − π(K+1)ts j|(K+1)t =
∑
k∈[K]

πkt s j|kt,

which enables identification of the model once π(K+1)ts j|(K+1)t is known. Thereofere, the identifi-
cation can work as follows: determining ξ jt allows us to resolve π(K+1)ts j|(K+1)t, and conversely,
knowing π(K+1)ts j|(K+1)t enables us to identify ξ jt. With mild assumptions, a one-to-one mapping
exists between the market-level shares and ξ jt. A formal argument for this result is left as future
work.

6.2 Overlapping nests with same price coefficient

Problems would occur if different nests have the same coefficients and the nests are overlapping.
For example, for alternatives j and j

′

, where θ( j) = θ( j
′

), uI0
k j − uI0

k j′
, αk, λk are constants for any

k ∈ θ( j). We still have E(∆ j j
′

t s|zt) = u + αE(p jt − p j′t|zt) for some constants u and a. We discuss
assumptions for identifying such problematic pairs of alternatives.

Definition 2. (Theoretically Distinct Types) Two types k and k′ are said to be theoretically distinct

given alternatives j and j
′

if

max{|αk − αk′ |, |(uk j − uk j′ ) − (uk′ j − uk′ j′ )|, |λk − λk′ |} > 0.

Definition 3. (Separating Alternatives) Two alternatives j , j
′

are said to separate types if

either (a) the sets of types that consider these alternatives are different—that is, θ( j) , θ( j
′

)—or

(b) the sets of types that consider these alternatives are the same—that is, θ( j) = θ( j
′

)—but there

exist two types k and k′ ∈ θ( j) that are theoretically distinct given j and j
′

. If j and j
′

are not

separating alternatives, we call them non-separating alternatives.
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Figure 5: Non-separating (problematic) alternatives for the dependence of irrelevant alternatives

Assumption 7. (Separating Condition) If alternatives j and j
′

satisfies

E(∆ j j
′

st|zt) = u + aE(p jt − p j′ t|zt)

for some constant a and u with almost surely, then j and j
′

are non-separating alternatives.

Remark 6.1. There are multiple ways to interpret Assumption 7. For example, it reflects the

difference in the “cross-price elasticity”. If θ( j) , θ( j
′

), without loss of generality, there is a

type k ∈ θ( j), k < θ( j
′

) with a pure alternative jk ∈ I(k) such that jk , j and jk , j
′

.16 The

assumption requires that the variation of z jkt on E(log s jt|zt) is different with z jkt on E(log s j′ t|zt)
after controlling the different effects of z jkt on their prices. If θ( j) = θ( j

′

), and the preference

parameters differ, the assumption asks that the “cross-price elasticity” is different conditional on

different nests.

We know that if the alternatives are non-separating, they satisfy (4). Conversely, our As-
sumption 7, which is economically reasonable, guarantees the reverse implication: if (4) holds,
then the pair of alternatives are non-separating. As the same as the argument in the Section 3,
together with the assumption of the instrumental variable, the property of the non-separating al-
ternatives ensures that if E(∆ j j

′

st|Z = zt) = u+ aE(p jt − p j′ t|zt), a = αk instead of any other value
for any k ∈ θ( j) = θ( j′). Therefore, we can also obtain information on the coefficients of the
characteristics by (4).

Building upon the identified non-separating alternatives and price coefficients, we develop a
Vertex Hunting Method (VHM) with errors in a separate work to identify pure alternatives and
their respective "fixed effects" relative to these pure alternatives. This VHM with errors extends
the work of Ke et al. (2019), which does not consider unobserved quality. The VHM without

16The existence comes from assuming that at least two pure alternatives exist in each nest.
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unobserved quality (see Arora et al. (2012a); Ke et al. (2019) and Appendix I.5) relies on the full
rank condition of W. We extend it with a stronger assumption than this paper accounting for noise
terms ξ. We can show that under some extra assumptions, E[σ−1(s jt, s

Ĩ0
t , p jt, pĨ0

t ;αĨ0 , λ̃, ẽ• j, ξ̃
Ĩ0
t ) |

zt] = 0 for nonnegative ẽ• j, nonnegative λ̃, and random variable ξ̃I0
t that E(ξI0

t |zt) = 0 if and only
if Ĩ0 = I0 for any I0 composed by pure alternatives from different nests and ẽ• j = e• j

k j.

7 Conclusion

In this paper, we have delved into the finite mixture models, emphasizing their widespread appli-
cations across various fields such as computer science, economics, and statistics. Particularly, our
focus has been on Logit Models with Finite Mixtures (FML), a category within discrete choice
models, where traditional parameter estimation methods often fall short in the presence of latent
subpopulations with unknown individual memberships. The paper introduces a three-step identi-
fication and estimation procedure for FML, leveraging a sufficient assumption of pure alternatives
within each mixture. This novel approach not only addresses the identification problem but also
aligns with sparsity assumptions in machine learning literature, demonstrating its versatility and
applicability.

Moreover, we contribute to the literature by introducing FML as a solution for enhancing topic
models in NLP and reexamining demand analysis models in the industrial organization. The
possible empirical application showcases the value of FML in providing nuanced insights that
go beyond existing models’ capabilities. Our method draws inspiration from machine learning
techniques, departing from traditional economic approaches, such as the post-LASSO method,
and emphasizing the recovery of sparse signals through clustering. This departure allows for
interpretable results, aligning with the inherent sparsity in mixtures and facilitating a clearer
understanding of the underlying structures of the data.
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A Identification with unobserved characteristics

A.1 Sufficient assumption for DIA: Dominant type

Lemma A.1. If for any pair of alternatives j and j′ that are not pure alternatives of the same

type, and for any type k ∈ θ( j) ∪ θ( j′), there exists a sequence {z̃k, j j′
t } such that a type of shares

for the pair dominant:

s jt

s j′t
| z̃k, j j′

t →
s j|k

s j′ |k
| z̃k, j j′

t

uniformly as t → ∞, and E(p jt − p j′t | z̃k, j j′
t ) remains bounded as t grows. Then Assumption 3

holds.

Proof. If θ( j) , θ( j
′

), to be specific, choose k ∈ θ( j) and k < θ( j
′

), then

s jt

s j′t
| z̃k, j j′

t →
s j|kπkt

0
| z̃k, j j′

t → ∞.

Therefore, for any constant a, E(∆ j j
′

st | zt) − aE(p jt − p j′ t | zt)→ ∞. This implies that E(∆ j j
′

st |

zt) − aE(p jt − p j′ t | zt) , u.
If θ( j) = θ( j

′

) and there exists (k1, k2) with αk1 , αk2 , we can choose k = k1

s jt

s j′ t
| z̃k1, j j

′

t →
s j|k1

s j′ |k1

| z̃k1, j j
′

t = euk1 j−uk1 j′+αk1 (p jt−p j′ t)+λk1 (ξ jt−ξ j′ t)|z̃k1, j j
′

t .

However, if we choose k = k2,

s jt

s j′ t
| z̃k2, j j

′

t →
s j|k2

s j′ |k2

| z̃k2, j j
′

t = euk2 j−uk2 j′+αk2 (p jt−p j′ t)+λk2 (ξ jt−ξ j′ t)|z̃k2, j j
′

t .

Taking the log and the expectation suggests a contradiction of the constant a in ∆E(log s jt −

log s j′ t|zt) − a∆E(p jt − p j′ t|zt). □

Corollary A.1. A nested logit model with pt ⊥ ξt and ξt bounded satisfies Assumption 3

Proof. The construction below exactly uses the previous remark. For a nested logit model,

s jt =
e

δ jt
σθ( j)∑

i∈Jk
e

δit
σθ( j)

(
∑

i∈Jθ( j)
e

δit
σθ( j) )σ

θ( j)

∑K
l=1(

∑
i∈Jl

e
δit
σl )σl

,

where σk < 1 for k ∈ [K] to guarantee the identification of nests.
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For j and j
′

in different nests, set δ jt/σ
θ( j) and δ j′ t/σ

θ( j′) to −∞ with rate −tη. Also, set
the utility of all other elements in the nest of j

′

to −∞ with the rate −tη and fix the utility of
alternatives in θ( j).

We have

s j′ t

s jt
=

e
δ

j′ t

σθ( j′ )∑
i∈J

θ( j′ )
e

δit

σθ( j′ )

(
∑

i∈J
θ( j′ )

e
δit

σθ( j′ ) )σ
θ( j
′

)

∑K
l=1(

∑
i∈Jl

e
δit
σl )σl

/
e

δ jt
σθ( j)∑

i∈Jθ( j)
e

δit
σθ( j)

(
∑

i∈Jθ( j)
e

δit
σθ( j) )σ

θ( j)

∑K
l=1(

∑
i∈Jl

e
δit
σl )σl

=
e

δ
j′ t

σθ( j′ )∑
i∈J

θ( j′ )
e

δit

σθ( j′ )

(
∑

i∈J
θ( j′ )

e
δit

σθ( j′ ) )σ
θ( j
′

)
/

e
δ jt
σθ( j)∑

i∈Jθ( j)
e

δit
σθ( j)

(
∑

i∈Jθ( j)

e
δit
σθ( j) )σ

θ( j)

∼ c0

(
∑

i∈Jθ( j)
e

δit
σθ( j) )1−σθ( j)

(
∑

i∈J
θ( j′ )

e
δit

σθ( j′ ) )1−σθ( j′ )

→ ∞.

Assumption 3 reflects when all prices within a nest are very large, the nest j′ itself might still be
attractive. □

A.2 Price coefficient: Proof of Theorem 1

Lemma A.2. Under Assumptions 2 and 3, alternatives j and j′ are pure alternatives of the same

type k ∈ [K] with αk = a if and only if there exist constants u and a such that E(∆ j j
′

t s|zt) =
u + aE(p jt − p j′ t|zt).

Proof. The “only if” direction is from the definition of pure alternative. We discuss the “if”
direction. By Assumption 3, θ( j) = θ( j

′

). Suppose that ( j, j′) are pure alternatives. We want to
show that α is unique. We have

E(∆ j j
′

st|zt) = u j j′ + αkE(p jt − p j′ t|zt)

= u + αE(p jt − p j′ t|zt).

Finally, E(p jt − p j′ t|zt) is not degenerate and observed, so α0 = αk identified. □

Theorem 1. Under assumptions 1, 2, 3, the parameter αK in the FML is identified.

Proof. Assumption 3 guarantees that if we observe E(∆ j j
′

st|zt) = u + aE(p jt − p j′ t|zt) then the
preference parameters for j and j′ are the same. The following lemma proves that together with
Assumption 2 if E(∆ j j

′

st|zt) = u + aE(p jt − p j′ t|zt), the coefficient αk = a is identified. □
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A.3 Sufficient assumption for full rank: Proof of remark 3.3

Lemma A.3. For type k ∈ [K], there exists a sequence of {z̃k, j
t } such that

π∗k jt | z̃
k, j
t >> π∗k′ jt | z̃

k, j
t

uniformly for any k′ , k. Then Assumption 4 is satisfied.

Proof. If ∑
k∈[K]

ekeζktπ∗k jt =
∑
k∈[K]

ẽkeζ̃ktπ∗k jt,

we want to show that e = ẽ. For ek Observe

E(log
∑
k∈[K]

ekeζktπ∗k jt | z̃
k, j j

′

t )→ E(log ekeζktπ∗kt | z̃
k, j j

′

t )

= log ek + E(ζt | z̃
k, j j

′

t ) + E(log π∗kt | z̃
k, j j

′

t )

= log ek + E(log π∗kt | z̃
k, j j

′

t )

We also have

E(log
∑
k∈[K]

π∗k′ jt | z̃
k, j j

′

t )→ log ẽk + E(log π∗kt | z̃
k, j j

′

t ).

Therefore, eK = ẽK . □

A.4 Type-alternative specific fixed effects: Proof of Theorem 2

Lemma A.4. Under Assumptions 2 and 4, take a set of pure alternatives in different nests I0 =

{ j1, · · · , jK}. For any alternative j ∈ [J], there exists an unique vector eI0
• j = (eI0

1 j, · · · , e
I0
K j) and

some ξI0
t = (ξ j1t, · · · , ξ jK t) where E(ξI0

t | zt) = 0 such that

E[σ−1(s jt, s
I0
t , p jt, pI0

t ;αK , λK , eI0
• j, ξ

I0
t ) | zt] = 0.

Proof. We start with the existence. For pure alternative jk, by definition

s jkt = πkt
eδk jkt∑

i∈Jk
eδkit
⇒

πkt∑
i∈Jk

eδkit
=

s jkt

eδk jkt
.
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Then, for any alternative j, we have

s jt =
∑
k∈[K]

πkt
1Jk( j)eδk jt∑

i∈Jk
eδkit
=

∑
k∈[K]

s jkt

eδk jkt
1Jk( j)eδk jt =

∑
k∈[K]

s jkt

e−αk p jk t+λkξ jk t
1Jk( j)eu

I0
k j e−ak p jt+λkξ jt

=
∑
k∈[K]

eI0
k js jkteλkξ jt−ak p jt

eλkξ jk t−αk p jk t
.

By Assumption 2 we therefore have,

E[σ−1(s jt, s
I0
t , p jt, pI0

t ;αK , λK , eI0
• j, ξ

I0
t ) | zt] = 0.

For the uniqueness, assume that there is ẽK
• j = (ẽ1 j, · · · , ẽK j) and some ξ̃K

t = (ξ̃ j1t, · · · , ξ̃ jK t)
such that

E[σ−1(s jt, s
I0
t , p jt, pI0

t ;αK , λK , ẽ• j, ξ̃
K
t ) | zt] = 0,

which is equivalent to

s jt =
∑

k

ẽk js jkteλ̃k ξ̃ jt−ak p jt

eλ̃k ξ̃ jk t−αk p jk t
=

∑
k

πkt
eλkξ jk t−αk p jk t∑

i∈Jk
eδkit

ẽk jeλ̃k ξ̃ jt−ak p jt

eλ̃k ξ̃ jk t−αk p jk t
=

∑
k

πkt
eλkξ jk t∑
i∈Jk

eδkit

ẽk jeλ̃k ξ̃ jt−ak p jt

eλ̃k ξ̃ jk t

=
∑

k

π∗k jt

eλkξ jk t ẽk jeλ̃k ξ̃ jt

eλ̃k ξ̃ jk t
=

∑
k

eλkξ jk t+λ̃k(ξ̃ jt−ξ̃ jk t)ẽk jπ
∗
k jt (where E(ξ̃K

t | zt) = 0)

since π∗k jt =
πkte

−αk p jt∑
i∈Jk

eδkit
by definition.

We also know that,

s jt =
∑
k∈[K]

πkt
1Jk( j)eδk jt∑

i∈Jk
eδkit
=

∑
k∈[K]

πkt

eI0
k je

λkξ jt−ak p jt∑
i∈Jk

eδkit
=

∑
k∈[K]

eλkξ jteI0
k jπ
∗
k jt

By assumption 4, we must have that ẽ• j = e• j. □

Theorem 2. Under assumptions 1, 2, 3, and 4, the parameters {θ(·), αK , uI0} in the FML are
identified.

Proof. Theorem 2 is based on the fact that the fixed effects of alternatives can be uniquely iden-
tified by a set of pure alternatives using conditional moment conditions by Lemma A.4. □
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A.5 Unobserved characteristics and probabilities of types: Proof of Theorem 3

Lemma A.5. Given (θ(·), αK , uI0), if E(ξ jt | t, s
I0
t , pI0

t , ξ
I0
t ) = 0 for any j ∈ J − I0, then πt and ξI0

t

are unique for the known distributions of s jt | t, s
I0
t , pI0

t , ξ
I0
t and p jt | t, s

I0
t , pI0

t , ξ
I0
t for any j ∈ J− I0.

Proof. We ignore the subscript t for the simplicity of the proof since we care about the variation
within the market. First, we know that for any j ∈ Jk − { jk},

log s j|k − log s jk = αk(p j − p jk) + uk j − u jk + λk(ξ j − ξ jk).

This implies E(log s j|k− log s jk |ξ
I0 , sI0 , pI0) = αkE(p j|ξ

I0 , sI0 , pI0)− p jk +u j−u jk +λkξ jk . Therefore,
we can identify ξ jk by the other pure alternatives in the nests because all the other variables in the
equation are observed.

With a give ξI0 , we can identify all the ξ j. Specifically,

s j =
∑
k∈[K]

πk
1Jk( j)eδk j∑

i∈Jk
eδki
=

∑
k∈[K]

s jk

eξ jk
1Jk( j)eδk j =

∑
k∈[K]

s jk

eξ jk
1Jk( j)ex⊤j βk−αk p j+λkξ j

by (2). There is an ξ j by the intermediate value theorem, and the unobserved quality’s exponential
is monotone, so the solution is unique. □

Theorem 3. Under assumptions 1, 2, 3, and 4, additionally assume the conditional distributions
s jt | t, s

I0
t , pI0

t , ξ
I0
t and p jt | t, s

I0
t , pI0

t , ξ
I0
t are known for any j ∈ J − I0, and E(ξ jt | t, s

I0
t , pI0

t , ξ
I0
t ) = 0

for any j ∈ J − I0, then parameters {σ−1(·), π(·)} in the FML are identified.

Proof. By Theorem 2, we are able to identify (θ(.), u, α). Then, conditional on each market with
many products, we can identify ξ jt by Lemma A.5. Then, the final step is to identify πt, which
is straightforward with ξ jt identified. We plug the identified parameters into the equation of pure
alternatives,

s jkt = πkt
1Jk( j)eδk jkt∑

i∈Jk
eδkit

.

□

B Algorithms

B.1 Two-stage least squares

We want to explain the specific 2SLS procedure here. Before formally explaining our algorithm,
the following is the oracle case if the actual s jt are observed. Under the ideal case, the dependent
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variable is ∆ j j
′

st. The exogenous variables are x j j
′

t and a constant term. The endogenous variable
is p j j

′

and the instruments are z jt and z j′ t.
Stage 1: regress endogenous variable on instruments and exogenous variables:

p j j
′

= ζ0 + x j j
′
⊤

t ζ1 + ζ2z jt + ζ3z j′ t + et.

Obtain the fitted values from this regression:

p̂ j j
′

= ζ̂0 + x̂ j j
′
⊤

t ζ̂1 + ζ̂2z jt + ζ̂3z j′ t.

Stage 2: regress the dependent variable on the fitted values and exogenous variables:

∆ j j
′

st = x j j
′
⊤

t β + αp̂ j j
′

+ u j j
′

+ ξ̃t.

The matrix format of this 2SLS estimator:

(β j j
′

2S LS ;α j j
′

2S LS ; u j j
′

2S LS ) =
(
X̃ j j

′
⊤Z̃ j j(Z̃ j j⊤Z̃ j j)−1Z̃ j j⊤X̃ j j

′
)−1

X̃ j j
′
⊤Z̃ j j(Z̃ j j⊤Z̃ j j)−1Z̃ j j⊤∆ j j

′

s.

The concern is that we cannot observe s jt. We will show that after dropping some “zeros”,
the empirical shares version of the 2SLS has good non-asymptotic results close to the true pa-
rameters. In the second stage, the objective function becomes

(β̂ j j
′

, α̂ j j
′

, û j j
′

) = argminα,β,u
1
T

∑
t

1{ŝ jt ∧ ŝ j′ t > 0}(∆ j j
′

ŝt − x j j
′

β − αp̂ j j
′

− u)2.

B.2 Functional form test

For testing the correctness of the parametric regression model of a pair of alternatives, the null
hypothesis is

H j j
′

0 : E(∆ j j
′

st − m(x̃ j j
′

t , γ) | z̃ j j
′

t ) = 0, almost surely for some γ = γ0

where m(x̃ j j
′

t , γ) is a known function with γ being a vector of unknown parameters in a compact
space. The alternative hypothesis is the negation of the H j j

′

0 , namely,

H j j
′

1 : E(∆ j j
′

st − m(x̃ j j
′

t , γ) | z̃ j j
′

t ) , 0,with positive probability for any γ.

The compactness of γ is required to ensure that the positive probability in the alternative
hypothesis is strictly greater than zero. In our specification, we define ∆ j j

′

st = x j j
′
⊤

t β + αp j j
′

+
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u j j
′

+ ξ̃
j j
t by setting m(x̃t, γ0) = x j j

′
⊤

t β+αp j j
′

+u j j
′

. We can, therefore, base our test on the moment
E[E(ξ̃ j j

′

t | Zt)2] to distinguish the null and the alternative.
There are two challenges to implement the estimate of E[E(ξ̃ j j

′

t | Zt)2] by samples. The first
is that we need to estimate f (ξ̃ j j

′

t | Zt). The conditional expectation, therefore, includes a term
of denominator, which could approximate zero. In details, The kernel-based estimator for the
conditional expectation E(ui|Xi = x) is given by

Ê(ui|Xi = x) =
∑n

i=1 uiKh(x − Xi)∑n
i=1 Kh(x − Xi)

where kernel functions are crucial in several machine learning algorithms, and they typically
possess the following properties: (a)K(x, y) ≥ 0 (b)K(x, y) = K(y, x) (c) There exists a constant
M such that K(x, y) ≤ M for all x, y. We use the Gaussian kernel, also known as the Radial Basis
Function (RBF) kernel: K(x, y) = exp

(
−
∥x−y∥22

2σ2

)
where σ is the kernel width parameter.

Secondly, E[E(ξ̃ j j
′

t | Z̃t)2] includes three expectation so three summations. We rely on the law
of iterated expectation to transform E(ξ̃ j j

′

t | Z̃t)2 into E[ξ̃ j j
′

t E(ξ̃ j j
′

t | Z̃t) | Z̃t] because E(ξ̃ j j
′

t | Z̃t) is
a function of Z̃t. Then we use the law of iterated expectation again E[ξ̃ j j

′

t E(ξ̃ j j
′

t | Z̃t)].
The final moment we use for the test is

Φ = E[ξ̃ j j
′

t E(ξ̃ j j
′

t | z jt, z j′ t) f (z jt, z j′ t)].

which restricts Z̃t by z jt and z j′ t due to the curse of dimensionality. We estimate the E(ξ̃ j j
′

t |

z jt, z j′ t) f (z jt, z j′ t) by the leave-one-out kernel estimator 1
T−1

∑
τ,t ξ̂

j j
′

t Kh,tτ where ξ̂ j j
′

t = 1{ŝ jt∧ ŝ j′ t >

δ}(∆ j j
′

ŝt − x j j
t
⊤β̂ j j

′

− α̂ j j
′

p j j
′

t − û j j
′

) and Kh,tτ = h−1
1 h−1

2 k( z jt−z jτ

h1
)k(

z j′ t−z j′ τ

h2
). Similar to the discussion

of the 2SLS, the sample analogue becomes

Φ̂ j j
′

=
1

T (T − 1)

T∑
t=1

T∑
τ=1,z,t

ξ̂
j j
′

t ξ̂ j j
′

τ h−1
1 h−1

2 k(
z jt − z jτ

h1
)k(

z j′ t − z j′τ

h2
).

B.3 Conditional GMM for fixed effects

The functional form test is designed to estimate the preference parameters. We discuss the GMM
to estimate the fixed effects. First, given the alternatives’ fixed effects and observed preferences,
we would like to recover the unobserved characteristics. We assume the error terms are inde-
pendent, allowing us to treat the unobserved characteristics of a set of pure alternatives across
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different nests as parameters. We use the moment condition that

E[σ−1
jt (s jt, x jt, p jt) | t, s

I0
t , j < I0; γK , λK , eI0

• j, ξ
I0
t , I0] = 0

Then, we can define

ξ̃K
t (γ̃K , ẽ• j) = {ξ̃K

t ∈ Ξ
K : E[σ−1

jt (s jt, x jt, p jt) | t, s
I0
t , j < J − I(k); γ̃, λ, ẽ• j, ξ̃

K
t , Ĩ0] = 0}

and ξ̃K
t = ξ

I0
t when γ̃K = γK and ẽ• j = eI0

• j. Once adjusting the identified observed and unobserved
qualities, we can use the shares of the pure alternatives to predict the remaining shares perfectly.
These two components interact and are combined into the moment conditions:

E[ẑ jtσ
−1
jt

(
γK , λ, eI0

• j, ξ̃t(γK , eI0
• j)

)
] = 0

It is easy to show that the estimate is unique by the fixed point theorem. Then, we use the
leave-one-out estimator for the moment condition:

min
e≥0

∑
j∈J

1
T (T − 1)

∑
t

∑
τ,t

ξ̂ jtẑ⊤jtẑ jτξ̂ jτ.

C Non-asymptotic properties for the two stage least square

We proceed to discuss the 2SLS estimates and demonstrate that the estimate is close to the Or-
acle 2SLS. With an accurate estimate, we can then apply the functional form test to check for
linearity. Our approach differs from the existing literature in that we examine all results from a
non-asymptotic perspective. A key assumption is that the utilities of the alternatives are bounded,
ensuring that the shares remain sufficiently large with high probability. Under this assumption,
the logarithmic transformation will capture certain linear properties. Here, we show that if we
can observe the actual shares and pure (non-separating) alternatives, we can estimate the prefer-
ence parameter “consistently”. Without further explanation, we might ignore the subscript of j j

′

for the simplicity of the argument.

Lemma C.1. Given any non-separating alternatives j and j
′

, define γu
2S LS = (β2S LS , α2S LS , u2S LS )

as estimates of the Oracle 2SLS procedure given in Appendix B. If Assumption 5 holds, then there

is γu
k := (βk, αk, u

j j
′

k ) for k ∈ [K] such that for any ϵ > 0

P(∥γu
2sls − γ

u
k∥2 > ϵ) < C1e−C2T ϵ2
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with positive constants C1 and C2.

Proof. To begin with, we know that for non-separating alternatives j and j
′

, for any k ∈ θ( j)

∆ j j
′

st = x j j
′
⊤

t βk − αk p j j
′

t + u j j
′

k + λkξ
j j
′

t .

This is equivalent to

∆ j j
′

s = X̃ j j
′

γu + λkξ
j j
′

t .

We ignore the subscript of j j
′

for the simplicity of the argument. The closed form 2SLS estimator,
therefore, is,

γu
2sls =

(
X̃⊤Z̃(Z̃⊤Z̃)−1Z̃⊤X̃

)−1
X̃⊤Z̃(Z̃⊤Z̃)−1Z̃⊤∆s.

As the common practice for the 2SLS, we have

γu
2sls =

(
X̃⊤Z̃(Z̃⊤Z̃)−1Z̃⊤X̃

)−1
X̃⊤Z̃(Z̃⊤Z̃)−1Z̃⊤(X̃γu + λkξt)

and therefore,

γu
2sls − γ

u = λk

(
X̃⊤Z̃(Z̃⊤Z̃)−1Z̃⊤X̃

)−1
X̃⊤Z̃(Z̃⊤Z̃)−1Z̃⊤ξt.

By the CS inequality,

∥γu
2sls − γ

u∥2 ≤ λk∥(
1
T

X̃⊤Z̃(Z̃⊤Z̃)−1Z̃⊤X̃)−1∥2∥
1
T

X̃⊤Z̃∥2∥(
1
T

Z̃⊤Z̃)−1∥2∥
1
T

Z̃⊤ξ∥2

≤ C̃1∥
1
T

Z̃⊤ξ∥2,

where the second inequality is from the fact that ∥( 1
T X̃⊤Z̃(Z̃⊤Z̃)−1Z̃⊤X̃)−1∥2 is bounded by Lemma

F.13 and ∥ 1
T X̃⊤Z̃∥2 is the sample average of bounded random variables. ∥( 1

T Z̃⊤Z̃)−1∥2 is bounded
by the minimum eigenvalue of 1

T Z̃⊤Z̃. Specifically, define

M =
1
T

X̃ j j
′
⊤Z̃,

and M ∈ R(d+1)×(d+2). For each entry, we have

Mii′ =
1
T

T∑
t=1

X̃tiZ̃i′t
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bounded. By the inequality of matrix norms that ∥M∥2 ≤ ∥M∥1∥M∥∞,∥M∥2 is bounded. Therefore,
C̃1 is a positive constant.

We only need to deal with ∥ 1
T Z̃⊤ξ∥2, which equals to

∥
1
T

∑
t

z̃tξt − E(z̃tξt)∥2 ≤
d+2∑
i=1

|
1
T

∑
t

z̃tiξt − E(z̃tξti)|.

where we use l2 vector norm is smaller than l1 norm.

P(∥γu
2sls − γ

u
k∥2 > ϵ) ≤ P(Ck∥

1
T

Z̃⊤ξ∥2 > ϵ) < C1e−C2T ϵ2

by Hoeffding’s inequality. □

Lemma C.2. Given alternatives ( j, j
′

) ∈ [J] with bounded utilities such that h0
J < s jt <

h1
J and

h0
J < s j′ t <

h1
J , define γ̂u = (β̂, α̂, û) as estimates of the 2SLS procedure given in Algorithm 1. If

J = o(N), δ ≤ c0
2J and Assumption 5 holds, then with γu

2sls := (β2sls, α2sls, u2sls) , for any 0 < ϵ < 2

P(∥γ̂u − γu
2S LS ∥2 > ϵ) < C1T (e−C2Nϵ2/J log2 J + e−C2N/J)

with positive constants C1 and C2.

Proof. In the following argument, we ignore j j
′

for the simplicity of the statement. In reality, we
optimize the objective function,

Q̂T (γu) =
1
T

∑
t

1{ŝt ∧ ŝt > 0}(∆ŝt − xtβ − α2sls p̂t − ut)2.

By contrast, under the Oracle case, ideally, we would like to optimize,

QT (γu) =
1
T

∑
t

(∆st − xtβ − αp̂t − ut)2.

The matrix format of this objective function is

QT (γu) =
1
T

(∆s − X̃γu)⊤PZ̃(∆s − X̃γu)

where PZ̃ is the projection matrix onto the space spanned by the instruments Z̃:

PZ̃ = Z̃(Z̃⊤Z̃)−1Z̃⊤.
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We concentrate on the event

{QT (γ̂u) − QT (γu
2sls) > ϵ}

because it can bound γ̂u − γu
2sls.

By definition of the minimization problem, we notice Q̂T (γ̂u) ≤ Q̂T (γu
2sls) and QT (γu

2sls) ≤
QT (γ̂u). Since

QT (γ̂u) − QT (γ̂u) + Q̂T (γ̂u) ≤ QT (γu
2sls) − QT (γu

2sls) + Q̂T (γu
2sls),

we have

QT (γ̂u) − QT (γu
2sls) ≤ QT (γ̂u) − Q̂T (γ̂u) + Q̂T (γu

2sls) − QT (γu
2sls).

Moreover, since QT (γ̂u) − QT (γu
2sls) ≥ 0, we derive the bound

|QT (γ̂u) − QT (γu
2sls)| ≤ |Q̂T (γ̂u) − QT (γ̂u)| + |Q̂T (γu

2sls) − QT (γu
2sls)|.

By Lemma F.28 for any 0 < ϵ < 2,

P(sup
γu
|QT (γu) − Q̂T (γu)| > ϵ) < C̃1T (e−C̃2Nϵ2/J log2 J + e−C̃2N/J log2 J)

with positive constants C̃1, and C̃2. Therefore, we derive

P(|Q̂T (γ̂u) − QT (γ̂u)| + |Q̂T (γu
2sls) − QT (γu

2sls)| > ϵ) < C̄1T (e−C̄2Nϵ2/J log2 J + e−C̄2N/J log2 J)

by the union bound. C̄1, and C̄2 are positive constants. It suggests that

P(|QT (γ̂u) − QT (γu
2sls)| > ϵ) < C̄1T (e−C̄2Nϵ2/J log2 J + e−C̄2N/J log2 J).
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Then we can bound ∥γ̂u − γu
2S LS ∥2 by

|QT (γ̂u) − QT (γu
2S LS )| =

1
T
|(∆s − X̃γ̂u)⊤PZ̃(∆s − X̃γ̂u) − (∆s − X̃γu

2S LS )⊤PZ̃(∆s − X̃γu
2S LS )|

=
1
T
|∆s⊤PZ̃∆s − 2∆s⊤PZ̃ X̃γ̂u + γ̂u⊤X̃⊤PZ̃ X̃γ̂u

− (∆s⊤PZ̃∆s − 2∆s⊤PZ̃ X̃γu
2S LS + γ

u
2S LS

⊤X̃⊤PZ̃ X̃γu
2S LS )|

=
1
T
|2∆s⊤PZ̃ X̃(γu

2S LS − γ̂
u) + γ̂u⊤X̃⊤PZ̃ X̃γ̂u − γu

2S LS
⊤X̃⊤PZ̃ X̃γu

2S LS |

=
1
T
|2∆s⊤PZ̃ X̃(γu

2S LS − γ̂
u)

+ (γ̂u − γu
2S LS + γ

u
2S LS )⊤X̃⊤PZ̃ X̃(γ̂u − γu

2S LS + γ
u
2S LS ) − γu

2S LS
⊤X̃⊤PZ̃ X̃γu

2S LS |

=
1
T
|2∆s⊤PZ̃ X̃(γu

2S LS − γ̂
u) + (γ̂u − γu

2S LS )⊤X̃⊤PZ̃ X̃(γ̂u − γu
2S LS )

+ 2γu
2S LS

⊤X̃⊤PZ̃ X̃(γ̂u − γu
2S LS )|

≥ C3||γ̂
u − γu

2S LS ||2,

where C3 > 0 is a constant. The last inequality is from the CS inequality and the boundness of
the eigenvalues. Therefore, we obtain

P(∥γ̂u − γu
2S LS ∥2 > ϵ) < C1T (e−C2Nϵ2/J log2 J + e−C2N/J)

with positive constants C1 and C2. □

Lemma C.3. Given any non-separating alternatives j and j
′

define γ̂u = (β̂, α̂, û) as estimates of

the 2SLS procedure given in Algorithm 1. If J = o(N), δ ≤ c0
2J and Assumption 5 holds, then with

γu := (β, α, u), for any 0 < ϵ < 2

P(∥γ̂u − γu∥2 > ϵ) < C1T (e−C2Nϵ2/J log2 J + e−C2N/J) + C̃1e−C̃2T ϵ2

with positive constants C̃1, C̃2, C1, and C2.

Proof. This comes directly from the union bound. □

This Lemma contains three errors: first, in the quadratic approximation of the logarithm of
empirical shares to actual shares when empirical shares are bounded; second, when the logarith-
mic share approaches zero; and third, in the errors arising from the Oracle 2SLS estimator.
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D Selection of pure alternatives

In this section, we discuss the statistical guarantees of choosing non-separating alternatives. Our
proof is new in that we check the non-asymptotic properties of these nonparametric tests.

The following lemmas analyze the convergence of observed tests under the null and alterna-
tive. To simplify, we drop j j′. Consider the leave-one-out kernel estimator:

Φ̂ =
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

ξ̂tξ̂τKh,tτ, (11)

where ξ̂t = 1{ŝ jt ∧ ŝ j′t > δ}(∆ŝt − x⊤t β̂ − α̂
j j′ pt − û), and Kh,tτ = h−1

1 h−1
2 k

( z jt−z jτ

h1

)
k
( z j′ t−z j′τ

h2

)
.

We compare this to the Oracle test:

Φ̂∗ =
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

ξ̂∗t ξ̂
∗
τKh,tτ, (12)

where ξ̂∗t = ∆st − x⊤t β̂ − α̂pt − û.
The distance between

1{ŝ jt ∧ ŝ j′t > δ}1{ŝ jτ ∧ ŝ j′τ > δ}(∆ŝt − x⊤t β̂ − α̂pt − û)(∆ŝτ − x⊤τ β̂ − α̂pτ − û)Kh,tτ

and

(∆st − x⊤t β̂ − α̂pt − û)(∆sτ − x⊤τ β̂ − α̂pτ − û)Kh,tτ

has two components:

H̃1 =1{ŝ jt ∧ ŝ j′t ∧ ŝ jτ ∧ ŝ j′τ > δ}
[
(∆ŝt − x⊤t β̂ − α̂pt − û)(∆ŝτ − x⊤τ β̂ − α̂pτ − û)

− (∆st − x⊤t β̂ − α̂pt − û)(∆sτ − x⊤τ β̂ − α̂pτ − û)
]

Kh,tτ,

and

H̃2 = 1{ŝ jt ∧ ŝ j′t ∧ ŝ jτ ∧ ŝ j′τ < δ}(∆st − x⊤t β̂ − α̂pt − û)(∆sτ − x⊤τ β̂ − α̂pτ − û)Kh,tτ.

The following two lemmas help investigate this first part H̃1.

Lemma D.1. Given alternatives ( j, j
′

) ∈ [J] and markets (t, τ) ∈ [T ] with bounded utilities such
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that h0
J < sil <

h1
J with any i ∈ { j, j

′

} and l ∈ {t, τ}, for any 0 < ϵ < 2

P[|(∆ŝt − ∆st)(∆sτ − xτβ̂ − α̂pτ − û)| > ϵ] ≤ C1(e−C2Nϵ2/J log2 J + e−C2N/J)

where C1 and C2 are positive constants.

Proof. We have

|(∆ŝt − ∆st)(∆sτ − xτβ̂ − α̂pτ − û)| ≤ C̃1 log J|∆ŝt − ∆st|

since xτ, pτ, β̂, α̂, and û are bounded. |∆ŝτ| = | log s jτ − log s j′τ| ≤ | log s jτ|+ | log s j′τ| ≤
2h1
J where

h1 represents for the upper bound of the utility. There exists positive C̃1 such that |∆sτ − xτβ̂ −

α̂pτ − û| ≤ C̃1 log J.
Moreover, since

|∆ŝt − ∆st| ≤ | log ŝ jt − log s jt| + | log ŝ j′ t − log s j′ t|,

we can base our concentration inequality on

P[|(∆ŝt − ∆st)(∆sτ − xτβ̂ − α̂pτ − û)| > ϵ] ≲ P[C̃1 log J| log ŝ jt − log s jt| >
1
2
ϵ]

by the union bound. Then, we rely on the Lemma F.21

P[log ŝ jt − log s jt| >
ϵ

2C̃1 log J
] ≤ C̄1(e−C̄2Nϵ2/J log2 J + e−C̃2N/J).

Therefore,

P[|(∆ŝt − ∆st)(∆sτ − xτβ̂ − α̂pτ − û)| > ϵ] ≤ C1(e−C2Nϵ2/J log2 J + e−C2N/J)

□

Lemma D.2. Given alternatives ( j, j
′

) ∈ [J] and markets (t, τ) ∈ [T ] with bounded utilities such

that h0
J < sil <

h1
J with any i ∈ { j, j

′

} and l ∈ {t, τ}, for any 0 < ϵ < 2

P[|(∆ŝt − ∆st)(∆ŝτ − ∆sτ)| > ϵ] ≤ C1(e−C2Nϵ2/J log2 J + e−C2N/J).
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Proof. Decompose

P[|(∆ŝt − ∆st)(∆ŝτ − ∆sτ)| > ϵ] =P[|(∆ŝt − ∆st)(∆ŝτ − ∆sτ)| > ϵ | ŝ jτ ∧ ŝ j′ >
c

2J
]P(ŝ jτ ∧ ŝ j′ >

c
2J

)︸                                                                                ︷︷                                                                                ︸
H1

P[|(∆ŝt − ∆st)(∆ŝτ − ∆sτ)| > ϵ | ŝ jτ ∧ ŝ j′τ <
c

2J
]P(ŝ jτ ∧ ŝ j′τ <

c
2J

)︸                                                                                   ︷︷                                                                                   ︸
H2

.

For H1,

H1 ≤ P[|(∆ŝt − ∆st)(∆ŝτ − ∆sτ)| > ϵ | ŝ jτ ∧ ŝ j′τ >
c0

2J
]

≤ P[C̃1 log J|∆ŝt − ∆st| > ϵ | ŝ jτ ∧ ŝ j′τ >
c0

2J
]

≤
P[C̃1 log J|∆ŝt − ∆st| > ϵ]

P(ŝ jτ ∧ ŝ j′τ >
c0
2J )

≲ P[C̃1 log J|∆ŝt − ∆st| > ϵ]

We therefore have H1 ≤ C̄1(e−C̄2Nϵ2/J log2 J + e−C̃2N/J).
For H2,

P(ŝ jτ ∧ ŝ j′τ <
c0

2J
) ≤ C̄1e−C̄2N/J

by Lemma F.20 and the union bound. Therefore we have

P[|(∆ŝt − ∆st)(∆ŝτ − ∆sτ)| > ϵ] ≤ C1(e−C2Nϵ2/J log2 J + e−C2N/J).

for some positive constant C1 and C2. □

Lemma D.3. Given alternatives ( j, j
′

) ∈ [J] with bounded utilities such that h0
J < sit <

h1
J with

any i ∈ { j, j
′

} and t ∈ [T ], for any 0 < ϵ < 2

P[
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

1{ŝ jt ∧ ŝ j′ t > δ}1{ŝ jτ ∧ ŝ j′τ > δ}|(∆ŝt − x⊤t β̂ − α̂pt − û)(∆ŝτ − x⊤τ β̂ − α̂pτ − û)Kh,tτ

− (∆st − x⊤t β̂ − α̂pt − û)(∆sτ − x⊤τ β̂ − α̂pτ − û)Kh,tτ| > ϵ]

≤ C1T 2(e−C2Nh2
1h2

2ϵ
2/J log2 J + e−C2N/J)

where C1 and C2 are positive constants.
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Proof.

1
T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

(
∆ŝt − x⊤t β̂ − α̂pt − û

) (
∆ŝτ − x⊤τ β̂ − α̂pτ − û

)
Kh,tτ.

=
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

(
∆ŝt − ∆st + ∆st − x⊤t β̂ − α̂pt − û

) (
∆ŝτ − ∆sτ + ∆sτ − x⊤τ β̂ − α̂pτ − û

)
Kh,tτ

=
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

[(∆ŝt − ∆st + ∆st − x⊤t β̂ − α̂pt − û)(∆ŝτ − ∆sτ + ∆sτ − x⊤τ β̂ − α̂pτ − û)

+ (∆ŝτ − ∆sτ)(∆st − x⊤t β̂ − α̂pt − û) + (∆ŝt − ∆st)(∆sτ − x⊤t β̂ − α̂pt − û)

+ (∆ŝt − ∆st)(∆ŝτ − ∆sτ)]Kh,tτ

=
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

[(∆ŝt − x⊤t β̂ − α̂pt − û)(∆ŝτ − x⊤τ β̂ − α̂pτ − û)

+ (∆ŝτ − ∆sτ)(∆st − x⊤t β̂ − α̂pt − û) + (∆ŝt − ∆st)(∆sτ − x⊤t β̂ − α̂pt − û)

+ (∆ŝt − ∆st)(∆ŝτ − ∆sτ)]Kh,tτ.

where Kh,tτ = h−1
1 h−1

2 k( z jt−z jτ

h1
)k(

z j′ t−z j′ τ

h2
). Therefore we have

P[
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

1{ŝ jt ∧ ŝ j′ t > δ}1{ŝ jτ ∧ ŝ j′τ > δ}|(∆ŝt − x⊤t β̂ − α̂pt − û)(∆ŝτ − x⊤τ β̂ − α̂
j j
′

pτ − û)Kh,tτ

− (∆st − x⊤t β̂ − α̂pt − û)(∆sτ − x⊤τ β̂ − α̂pτ − û)Kh,tτ| > ϵ]

≤ P[
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

|[(∆ŝt − x⊤t β̂ − α̂pt − û)(∆ŝτ − x⊤τ β̂ − α̂pτ − û)

− (∆st − x⊤t β̂ − α̂pt − û)(∆sτ − x⊤τ β̂ − α̂pτ − û)]Kh,tτ| > ϵ]

≲ T 2P[|(∆ŝt − x⊤t β̂ − α̂pt − û)(∆ŝτ − x⊤τ β̂ − α̂pτ − û)

− (∆st − x⊤t β̂ − α̂pt − û)(∆sτ − x⊤τ β̂ − α̂pτ − û)]Kh,tτ| > ϵ]

≤ T 2P[|(∆ŝt − x⊤t β̂ − α̂pt − û)(∆ŝτ − x⊤τ β̂ − α̂pτ − û)

− (∆st − x⊤t β̂ − α̂pt − û)(∆sτ − x⊤τ β̂ − α̂pτ − û)]| > h1h2ϵ]

≤ T 2P[|(∆ŝτ − ∆sτ)(∆st − x⊤t β̂ − α̂pt − û) + (∆ŝt − ∆st)(∆sτ − x⊤t β̂ − α̂pt − û)

+ (∆ŝt − ∆st)(∆ŝτ − ∆sτ)| > h1h2ϵ]

≤ C1T 2(e−C2Nh2
1h2

2ϵ
2/J log2 J + e−C2N/J)

where the first approximated inequality is from the union bound. The first inequality is from the
kernel function, which is bounded. The second inequality is from the argument above, and the
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final inequality is from the Lemmas. □

Lemma D.4. Given alternatives ( j, j
′

) ∈ [J] and markets (t, τ) ∈ [T ] with bounded utilities such

that h0
J < sil <

h1
J with any i ∈ { j, j

′

} and l ∈ {t, τ}, assume 0 < δ < h0
2J , and J = o(N). For any

ϵ > 0

P[
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

|1{ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ < δ}(∆st − x⊤t β̂ − α̂pt − û)(∆sτ − x⊤τ β̂ − α̂pτ − û)Kh,tτ| > ϵ]

≤ C1T 2e−C2N/J

Proof. We condition on the event ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ ≤
h0
2J and ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ >

h0
2J .

P(|1{ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ ≤ δ}(∆st − x⊤t β̂ − α̂pt − û)(∆sτ − x⊤τ β̂ − α̂pτ − û)Kh,tτ| > ϵ)

= P(|1{ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ ≤ δ}(∆st − x⊤t β̂ − α̂pt − û)

× (∆sτ − x⊤τ β̂ − α̂pτ − û)Kh,tτ| > ϵ | ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ ≤
h0

2J
)P(ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ ≤

h0

2J
)

+ P(|1{ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ ≤ δ}(∆st − x⊤t β̂ − α̂pt − û)

× (∆sτ − x⊤τ β̂ − α̂pτ − û)Kh,tτ| > ϵ | ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ >
h0

2J
)P(ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ >

h0

2J
)

= P(|1{ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ ≤ δ}(∆st − x⊤t β̂ − α̂pt − û)

× (∆sτ − x⊤τ β̂ − α̂pτ − û)Kh,tτ| > ϵ | ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ ≤
h0

2J
)P(ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ ≤

h0

2J
)

≤ P(ŝ jt ∧ ŝ j′ t ∧ ŝ jτ ∧ ŝ j′τ ≤
h0

2J
) ≲ e−h2

0N/8c1 J

where the second equality is from δ ≤ h0
2J and the last inequality is by Lemma F.20. □

Lemma D.5. Given alternatives ( j, j
′

) ∈ [J] and markets (t, τ) ∈ [T ] with bounded utilities such

that h0
J < sil <

h1
J with any i ∈ { j, j

′

} and l ∈ {t, τ}, for any ϵ > 0

P[|Φ̂ − Φ̂∗| > ϵ] ≤ C1T 2(e−C2Nh2
1h2

2ϵ
2/J log2 J + e−C2N/J)

Proof. The proof is directly from the union bound with Lemma D.3 and Lemma D.4. □

Then, we bound Φ̂∗ for both the null and alternative hypotheses:

Φ̂∗ =
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

ξ̂∗t ξ̂
∗
τh
−1
1 h−1

2 k
(
z jt − z jτ

h1

)
k
(
z j′t − z j′τ

h2

)
,

where ξ̂∗t = ∆st − x⊤t β̂ − α̂pt − û.
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Under the null hypothesis:

Φ̂∗ =
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

ξtξtKh,tτ −
2

T (T − 1)
(γ̂u − γu)⊤

T∑
t=1

T∑
τ=1,τ,t

ξt x̃τKh,tτ

+
1

T (T − 1)
(γ̂u − γu)⊤

T∑
t=1

T∑
τ=1,τ,t

x̃t x̃τKh,tτ(γ̂u − γu),

where ∆st = x̃⊤γu + ξt.
We will show that the test converges to zero exponentially under the null, with the tail bound

satisfying e−r(T )/ϵ , where r(T )/ϵ is the rate of convergence. The first term is a U-statistic with
mean zero, and the second and third terms are bounded by (γ̂u − γu) whose rates have been
discussed in the lemmas above.

On the other hand, under the alternative hypothesis:

Φ̂∗ =
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

[
ξ̃t + g(z jt, z j′t) − E(x̃⊤t γ̄u | z jt, z j′t)

]
×

[
ξ̃τ + g(z jτ, z j′τ) − E(x̃⊤τ γ̄u | z jτ, z j′τ)

]
Kh,tτ

−
2

T (T − 1)
(γ̂u − γ̄u)⊤

T∑
t=1

T∑
τ=1,τ,t

[
ξ̃t + g(z jt, z j′t) − E(x̃⊤t γ̄u | z jt, z j′t)

]
x̃τKh,tτ

+
1

T (T − 1)
(γ̂u − γ̄u)⊤

T∑
t=1

T∑
τ=1,τ,t

E(x̃t | z jt, z j′t)E(x̃⊤τ | z jτ, z j′τ)Kh,tτ(γ̂u − γ̄u),

where ∆st = g(x̃t) + ξ̄t and g(z jt, z j′t) = E(∆st | z jt, z j′t). We aim to show that this converges to:

E
{[
E(∆st | z jt, z j′t) − E(x̃⊤t γ̄u | z jt, z j′t)

]2
f (z jt, z j′t)

}
≥ cs,

where cs is a positive constant. The parameter γ̄u ensures that the 2SLS still converges, and a
tuning parameter between zero and a constant can distinguish separating from non-separating
alternatives.

The following lemmas focus on the tail bounds for the null hypothesis, starting with the
Oracle case and proceeding to the formal test.

Lemma D.6. Under the null hypothesis—that is, for non-separating alternatives j and j
′

with

bounded utilities such that h0
J < sit <

h1
J with any i ∈ { j, j

′

} and t ∈ [T ]— define γ̂u = (β̂, α̂, û) as
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estimates of the 2SLS procedure given in Algorithm 1. If J = o(N) and δ ≤ c0
2J for any 0 < ϵ < 1

P(|Φ̂∗| > ϵ) ≤ C1T (e−C2h1h2Nϵ2/J log2 J + e−C2N/J) + C̃1e−C̃2h1h2T ϵ2
.

Proof. We use the equality:

Φ̂∗ =
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

ξtξτKh,tτ︸                              ︷︷                              ︸
H1

−
2

T (T − 1)
(γ̂u − γu)⊤

T∑
t=1

T∑
τ=1,τ,t

ξt x̃τKh,tτ︸                                            ︷︷                                            ︸
H2

+
1

T (T − 1)
(γ̂u − γu)⊤

T∑
t=1

T∑
τ=1,τ,t

x̃t x̃⊤τ Kh,tτ(γ̂u − γu)︸                                                         ︷︷                                                         ︸
H3

For the H1, noticing that it is a U-statistic, we can directly use Lemma F.12, which is an
application of Heoffding’s decomposition and characteristic function. We also have

E[ξtξτh−1
1 h−1

2 k(
z jt − z jτ

h1
)k(

z j′ t − z j′τ

h2
)] = h−1

1 h−1
2 E[ξtξτk(

z jt − z jτ

h1
)k(

z j′ t − z j′τ

h2
)]

= h−1
1 h−1

2 E{E[ξtξτk(
z jt − z jτ

h1
)k(

z j′ t − z j′τ

h2
) | zt, zτ]}

= h−1
1 h−1

2 E{k(
z jt − z jτ

h1
)k(

z j′ t − z j′τ

h2
)E[ξtξτ | zt, zτ]}

= 0,

where the second equality uses the law of iterated expectation. The last equality is from the
exclusion restriction. Therefore,

P(|H1| > ϵ) ≲ e−T ϵ2/(4kσ2+ 2
3 kMϵ) ≤ e−T ϵ2/(8σ2+ 4

3 h−1
1 h−1

2 ϵ) ≤ e−T ϵ2/(8κ1h−1
1 h−1

2 +
4
3 h−1

1 h−1
2 ϵ)

≤ e−T ϵ2/(8κ1h−1
1 h−1

2 +
8
3 h−1

1 h−1
2 ) ≤ e−C̃2Th1h2ϵ

2
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where the first inequality is from k = 2. Also,

σ2 = E[ξtξτh−1
1 h−1

2 k(
z jt − z jτ

h1
)k(

z j′ t − z j′τ

h2
)]2

= E{E[ξtξτh−1
1 h−1

2 k(
z jt − z jτ

h1
)k(

z j′ t − z j′τ

h2
) | z jt, z j′t, z jτ, z jτ]2}

= E{h−2
1 h−2

2 k2(
z jt − z jτ

h1
)k2(

z j′ t − z j′τ

h2
)E[ξtξτ | z jt, z j′t, z jτ, z jτ]2}

= h−2
1 h−2

2

&
f (z jt, z j′t) f (z jτ, z j′τ)σ

2(z jt, z j′t)σ2(z jτ, z j′τ)

× k2(
z jt − z jτ

h1
)k2(

z j′ t − z j′τ

h2
)dz jtdz j′tdz jτdz j′τ

= h−1
1 h−1

2

&
f (z jt, z j′t) f (z jt + h1u, z j′t + h2v)σ2(z jt, z j′t)σ2(z jt + h1u, z j′t + h2v)

× k2 (u) k2 (v) dz jtdz j′tdudv

= h−1
1 h−1

2

&
f (z jt, z j′t)σ2(z jt, z j′t)

[
f (z jt, z j′t)σ2(z jt, z j′t)

+

(
∂ f
∂z jt

(z jt, z j′t)σ2(z jt, z j′t) + f (z jt, z j′t)
∂σ2

∂z jt
(z jt, z j′t)

)
h1u

+

(
∂ f
∂z j′t

(z jt, z j′t)σ2(z jt, z j′t) + f (z jt, z j′t)
∂σ2

∂z j′t
(z jt, z j′t)

)
h2v

+
1
2

∂2 f
∂z2

jt

(z̃ jt, z̃ j′t)σ2(z jt, z j′t) + f (z jt, z j′t)
∂2σ2

∂z2
jt

(z̃ jt, z̃ j′t)

 h2
1u2

+
1
2

 ∂2 f
∂z2

j′t

(z̃ jt, z̃ j′t)σ2(z jt, z j′t) + f (z jt, z j′t)
∂2σ2

∂z2
j′t

(z̃ jt, z̃ j′t)

 h2
2v2

+

(
∂2 f

∂z jt∂z j′t
(z̃ jt, z̃ j′t)σ2(z jt, z j′t) + f (z jt, z j′t)

∂2σ2

∂z jt∂z j′t
(z̃ jt, z̃ j′t)

)
h1h2uv

]
× k2(u)k2(v) dudvdz jtdz j′t

by change of variables that z jτ = z jt + h1u and z j′τ = z jτ + h2v. The sixth inequality is from the
Taylor expansion. z̃ jt lies between z jt and z jτ, with z̃ j′ t between z j′ t and z j′τ. This can be further
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expressed as:

σ2 = h−1
1 h−1

2

&
f (z jt, z j′t)σ2(z jt, z j′t)

×

[
f (z jt, z j′t)σ2(z jt, z j′t) + 0 + 0 +

1
2

∂2 f
∂z2

jt

(z̃ jt, z̃ j′t)σ2(z jt, z j′t) + f (z jt, z j′t)
∂2σ2

∂z2
jt

(z̃ jt, z̃ j′t)

 h2
1u2

+
1
2

 ∂2 f
∂z2

j′t

(z̃ jt, z̃ j′t)σ2(z jt, z j′t) + f (z jt, z j′t)
∂2σ2

∂z2
j′t

(z̃ jt, z̃ j′t)

 h2
2v2

+

(
∂2 f

∂z jt∂z j′t
(z̃ jt, z̃ j′t)σ2(z jt, z j′t) + f (z jt, z j′t)

∂2σ2

∂z jt∂z j′t
(z̃ jt, z̃ j′t)

)
h1h2uv

]
k2(u)k2(v) dz jtdz j′tdudv

= h−1
1 h−1

2

"
f 2(z jt, z j′t)σ4(z jt, z j′t)dz jtdz j′t

"
k2(u)k2(v)dudv

+ h1h−1
2

&
1
2

f (z jt, z j′t)σ2(z jt, z j′t)

×

∂2 f
∂z2

jt

(z̃ jt, z̃ j′t)σ2(z jt, z j′t) + f (z jt, z j′t)
∂2σ2

∂z2
jt

(z̃ jt, z̃ j′t)

 u2k2(u)k2(v)dudvdz jtdz j′t

+ h−1
1 h2

&
1
2

f (z jt, z j′t)σ2(z jt, z j′t)

×

 ∂2 f
∂z2

j′t

(z̃ jt, z̃ j′t)σ2(z jt, z j′t) + f (z jt, z j′t)
∂2σ2

∂z2
j′t

(z̃ jt, z̃ j′t)

 k2(u)v2k2(v)dudvdz jtdz j′t

+

& (
∂2 f

∂z jt∂z j′t
(z̃ jt, z̃ j′t)σ2(z jt, z j′t) + f (z jt, z j′t)

∂2σ2

∂z jt∂z j′t
(z̃ jt, z̃ j′t)

)
uk2(u)vk2(v)dudvdz jtdz j′t

≲ h−1
1 h−1

2 ,

where we also use the CS inequality that
∫

k2(u)du ≤ [
∫

k(u)du]2 = 1,
∫

uk2(u)du = 0 by
k(u) = k(−u). We cannot take the integral of (u, v) out since the second derivatives depend on z

and (u, v).
Then, we discuss H2. First of all, we notice

E[ξtxτh−1
1 h−1

2 k(
z jt − z jτ

h1
)k(

z j′ t − z j′τ

h2
)] = h−1

1 h−1
2 E[ξtxτk(

z jt − z jτ

h1
)k(

z j′ t − z j′τ

h2
)]

= h−1
1 h−1

2 E{E[ξtxτk(
z jt − z jτ

h1
)k(

z j′ t − z j′τ

h2
) | zt, zτ, xτ]}

= h−1
1 h−1

2 E{xτk(
z jt − z jτ

h1
)k(

z j′ t − z j′τ

h2
)E[ξt | zt, zτ, xτ]}

= 0.
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We can also get

P(||
2

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

ξt x̃τKh,tτ||2 > ϵ) ≤ C2,1e−C2,2Th1h2ϵ
2

by the same way as H1. Therefore, H2 has

P[|(γ̂u − γu)⊤
2

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

ξt x̃τKh,tτ| > ϵ]

≤ P(||γ̂u − γu||2||
2

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

ξt x̃τKh,tτ||2 > ϵ)

≤ P(||γ̂u − γu||2 >
√
ϵ) + P(||

2
T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

ξt x̃τKh,tτ||2 >
√
ϵ)

≤ P(||γ̂u − γu||2 > ϵ) + P(||
2

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

ξt x̃τKh,tτ||2 > ϵ)

≤ C1T (e−C2Nϵ2/J log2 J + e−C2N/J) + C̃1e−C̃2T ϵ2
+ e−C2N/J) + C̃1e−C̃2Th1h2ϵ

2

≤ C1T (e−C2Nϵ2/J log2 J + e−C2N/J) + C̃1e−C̃2Th1h2ϵ
2

where the first inequality is from the CS inequality. The second inequality is from the union
bound and the third is from ϵ < 1. The forth inequality is directly based on Lemma C.3.

Finally, we focus on H3:

|
1

T (T − 1)
(γ̂u − γu)⊤

T∑
t=1

T∑
τ=1,τ,t

x̃t x̃⊤τ Kh,tτ(γ̂u − γu)| ≲ h−1
1 h−1

2 ||γ̂
u − γu||22.

We get

P(|H3| > ϵ) ≤ P(κ2h−1
1 h−1

2 ||γ̂
u − γu||22 > ϵ) = P(||γ̂u − γu||2 >

√
h1h2ϵ

κ2
)

≤ P(||γ̂u − γu||2 >

√
h1h2

κ2
ϵ) ≤ C1T (e−C2h1h2Nϵ2/J log2 J + e−C2N/J) + C̃1e−C̃2h1h2T ϵ2

by ϵ < 1.
In conclusion, for any 0 < ϵ < 1 we obtain the bound:

P(|Φ̂∗| > ϵ) ≤ C1T (e−C2h1h2Nϵ2/J log2 J + e−C2N/J) + C̃1e−C̃2h1h2T ϵ2
.
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□

The rate here is different from the previous lemma in h1h2 because the previous lemma did
not have a mean zero.

Lemma D.7. Under the null hypothesis—that is, for non-separating alternatives j and j
′

with

bounded utilities such that h0
J < sit <

h1
J with any i ∈ { j, j

′

} and t ∈ [T ]— define γ̂u = (β̂, α̂, û) as

estimates of the 2SLS procedure given in Algorithm 1. If J = o(N) and δ ≤ c0
2J for any 0 < ϵ < 1

P(|Φ̂| > ϵ) ≤ C1T 2(e−C2h2
1h2

2Nϵ2/J log2 J + e−C2N/J) + C̃1e−C̃2h1h2T ϵ2
.

Proof. This comes from the union bound. □

This lemma focuses on the tail bound for the alternative hypothesis. While we could still
apply Bernstein’s inequality, it is unnecessary here, as the rate for the alternative does not need
to be strict to achieve rate consistency. However, we need to expand it more to check the

Lemma D.8. Under the alternative hypothesis—that is, for separating alternatives j and j
′

with

bounded utilities such that h0
J < sit <

h1
J with any i ∈ { j, j

′

} and t ∈ [T ]— define γ̂u = (β̂, α̂, û) as

estimates of the 2SLS procedure given in Algorithm 1. If J = o(N) and δ ≤ c0
2J for any 0 < ϵ < 1

then there exists O(h2
1) and O(h2

2) such that

P(|Φ̂∗ − E
{[

g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)
]2 f (z jt, z j′ t)

}
− O(h2

1) − O(h2
2)| > ϵ)

≤ C̃1e−C̃2h2
1h2

2T ϵ2
.

Proof.

Φ̂∗ =
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

[ξ̃t + g(z jt, z j′ t) − E(x̃⊤t γ̄u|z jt, z j′ t)][ξ̃τ + g(z jτ, z j′τ) − E(x̃⊤τ γ̄u|z jτ, z j′τ)]Kh,tτ

−
2

T (T − 1)
(γ̂u − γ̄u)⊤

T∑
t=1

T∑
τ=1,τ,t

[ξ̃t + g(z jt, z j′ t) − E(x̃⊤t γ̄u|z jt, z j′ t)]x̃τKh,tτ

+
1

T (T − 1)
(γ̂u − γ̄u)⊤

T∑
t=1

T∑
τ=1,τ,t

E(x̃t | z jt, z j′ t)E(x̃⊤τ | z jτ, z j′τ)Kh,tτ(γ̂u − γ̄u)

We focus on the first part

UT =
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ,t

[ξ̃t + g(z jt, z j′ t) − E(x̃⊤t γ̄u|z jt, z j′ t)][ξ̃τ + g(z jτ, z j′τ) − E(x̃⊤τ γ̄u|z jτ, z j′τ)]Kh,tτ.
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It is a U-statistic, therefore, by the Lemma F.11 of Hoeffding:

P(|UT − E(UT )| > ϵ) < C1,1e−C1,2Th2
1h2

2ϵ
2
.

We calculate the expectation

E(Un) = E[ξ̃t + g(z jt, z j′ t) − E(x̃⊤t γ̄u|z jt, z j′ t)][ξ̃τ + g(z jτ, z j′τ) − E(x̃⊤τ γ̄u|z jτ, z j′τ)]Kh,tτ

= E{[g(z jτ, z j′τ) − E(x̃⊤τ γ̄u|z jτ, z j′τ)][g(z jτ, z j′τ) − E(x̃⊤τ γ̄u|z jτ, z j′τ)]Kh,tτ}

by the law of iterated expectation and the exclusion restriction. Specifically, we want to check

h−1
1 h−1

2 E
{[

g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)
]

×
[
g(z jτ, z j′τ) − E(x̃⊤τ γ̄u | z jτ, z j′τ)

]
k
(
z jt − z jτ

h1

)
k
(
z j′ t − z j′τ

h2

) }
= h−1

1 h−1
2

&
f (z jt, z j′ t) f (z jτ, z j′τ)

[
g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)

]
×

[
g(z jτ, z j′τ) − E(x̃⊤τ γ̄u | z jτ, z j′τ)

]
k
(
z jt − z jτ

h1

)
k
(
z j′ t − z j′τ

h2

)
dz jtdz j′ tdz jτdz j′τ

=

&
f (z jt, z j′ t) f (z jt + h1u, z j′ t + h2v)

[
g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)

]
×

[
g(z jt + h1u, z j′ t + h2v) − E(x̃⊤τ γ̄u | z jt + h1u, z j′ t + h2v)

]
k(−u)k(−v)dudvdz jtdz j′ t

=

&
f (z jt, z j′ t) f (z jt + h1u, z j′ t + h2v)

[
g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)

]
×

[
g(z jt + h1u, z j′ t + h2v) − E(x̃⊤τ γ̄u | z jt + h1u, z j′ t + h2v)

]
k(u)k(v)dudvdz jtdz j′ t,

where the first equality is by definition. The second equality is from the change of the variable
that z jτ = z jt + h1u and z j′τ = z j′ t + h2v (h1 and h2 disappear because of it). In order to show
that it is close to E{[E(∆st | z jt, z j′ t) − E(x̃⊤t γ̄u|z jt, z j′ t)]2 f (z jt, z j′ t)}, we use second-order Taylor
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expansion to transform the model around z jt and z j′ t. We further simplify this equation to

=

&
f (z jt, z j′ t)

[
f (z jt, z j′ t) +

∂ f
∂z jt

(z jt, z j′ t)h1u +
∂ f
∂z j′ t

(z jt, z j′ t)h2v

+
1
2
∂2 f
∂z2

jt

(z jt, z j′ t)h
2
1u2 +

∂2 f
∂z jt∂z j′ t

(z jt, z j′ t)h1h2uv +
1
2
∂2 f
∂z2

j′ t

(z jt, z j′ t)h
2
2v2

]
×

[
g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)

]
×

[
g(z jt, z j′ t) +

∂g
∂z jt

(z jt, z j′ t)h1u +
∂g
∂z j′ t

(z jt, z j′ t)h2v

+
1
2
∂2g
∂z2

jt

(z̃ jt, z̃ j′ t)h
2
1u2 +

∂2g
∂z jt∂z j′ t

(z̃ jt, z̃ j′ t)h1h2uv +
1
2
∂2g
∂z2

j′ t

(z̃ jt, z̃ j′ t)h
2
2v2

− E(x̃⊤τ γ̄u | z jt, z j′ t) −
∂E(x̃⊤τ γ̄u | z jt, z j′ t)

∂z jt
h1u −

∂E(x̃⊤τ γ̄u | z jt, z j′ t)
∂z j′ t

h2v

−
1
2
∂2E(x̃⊤τ γ̄u | z̃ jt, z̃ j′ t)

∂z2
jt

h2
1u2 −

∂2E(x̃⊤τ γ̄u | z̃ jt, z̃ j′ t)
∂z jt∂z j′ t

h1h2uv

−
1
2
∂2E(x̃⊤τ γ̄u | z̃ jt, z̃ j′ t)

∂z2
j′ t

h2
2v2

]
k(v)k(u) dz jt dz j′ t du dv.

Then, we want to reorder the term for further analysis. Before that, we define

f := f (z jt, z j′ t)

g := g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t).

Also define

f + :=
∂ f
∂z jt

(z jt, z j′ t)h1u +
∂ f
∂z j′ t

(z jt, z j′ t)h2v

+
1
2
∂2 f
∂z2

jt

(z̃ jt, z̃ j′ t)h
2
1u2 +

∂2 f
∂z jt∂z j′ t

(z̃ jt, z̃ j′ t)h1h2uv +
1
2
∂2 f
∂z2

j′ t

(z̃ jt, z̃ j′ t)h
2
2v2,
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and

g+ :=
∂g
∂z jt

(z jt, z j′ t)h1u +
∂g
∂z j′ t

(z jt, z j′ t)h2v

+
1
2
∂2g
∂z2

jt

(z̃ jt, z̃ j′ t)h
2
1u2 +

∂2g
∂z jt∂z j′ t

(z̃ jt, z̃ j′ t)h1h2uv +
1
2
∂2g
∂z2

j′ t

(z̃ jt, z̃ j′ t)h
2
2v2

−
∂E(x̃⊤τ γ̄u | z jt, z j′ t)

∂z jt
h1u −

∂E(x̃⊤τ γ̄u | z jt, z j′ t)
∂z j′ t

h2v

−
1
2
∂2E(x̃⊤τ γ̄u | z̃ jt, z̃ j′ t)

∂z2
jt

h2
1u2 −

∂2E(x̃⊤τ γ̄u | z̃ jt, z̃ j′ t)
∂z jt∂z j′ t

h1h2uv −
1
2
∂2E(x̃⊤τ γ̄u | z̃ jt, z̃ j′ t)

∂z2
j′ t

h2
2v2.

With these notations, the equation inside the integral that we are interested in is

f g( f + f +)(g + g+) = ( f 2g + f f +g)(g + g+)

= f 2g2 + f 2gg+ + f f +g2 + f f +gg+,

on which we want to show that f 2gg+ + f f +g2 + f f +gg+ is small, because&
f 2g2k(u)k(v)dudvdz jtdz j′ t =

"
f 2g2dz jtdz j′ t

= E
{[

g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)
]2 f (z jt, z j′ t)

}
where the first equality is from

!
k(u)k(v)dudv = 1.

Then, for the second part,&
f 2gg+dudvdz jtdz j′ t

=

&
f 2(z jt, z j′ t)[g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)]

× [
∂g
∂z jt

(z jt, z j′ t)h1u +
∂g
∂z j′ t

(z jt, z j′ t)h2v

+
1
2
∂2g
∂z2

jt

(z̃ jt, z̃ j′ t)h
2
1u2 +

∂2g
∂z jt∂z j′ t

(z̃ jt, z̃ j′ t)h1h2uv +
1
2
∂2g
∂z2

j′ t

(z̃ jt, z̃ j′ t)h
2
2v2

−
∂E(x̃⊤τ γ̄u | z jt, z j′ t)

∂z jt
h1u −

∂E(x̃⊤τ γ̄u | z jt, z j′ t)
∂z j′ t

h2v

−
1
2
∂2E(x̃⊤τ γ̄u | z̃ jt, z̃ j′ t)

∂z2
jt

h2
1u2 −

∂2E(x̃⊤τ γ̄u | z̃ jt, z̃ j′ t)
∂z jt∂z j′ t

h1h2uv −
1
2
∂2E(x̃⊤τ γ̄u | z̃ jt, z̃ j′ t)

∂z2
j′ t

h2
2v2]

× k(u)k(v)dudvdz jtdz j′ t,
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which can be simplified by the property of the kernel:&
f 2gg+dudvdz jtdz j′ t

=

&
f 2(z jt, z j′ t)[g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)]

× [0 + 0 +
1
2
∂2g
∂z2

jt

(z̃ jt, z̃ j′ t)h
2
1u2 +

∂2g
∂z jt∂z j′ t

(z̃ jt, z̃ j′ t)h1h2uv +
1
2
∂2g
∂z2

j′ t

(z̃ jt, z̃ j′ t)h
2
2v2

−
∂E(x̃⊤τ γ̄u | z jt, z j′ t)

∂z jt
h1u −

∂E(x̃⊤τ γ̄u | z jt, z j′ t)
∂z j′ t

h2v

−
1
2
∂2E(x̃⊤τ γ̄u | z̃ jt, z̃ j′ t)

∂z2
jt

h2
1u2 −

∂2E(x̃⊤τ γ̄u | z̃ jt, z̃ j′ t)
∂z jt∂z j′ t

h1h2uv −
1
2
∂2E(x̃⊤τ γ̄u | z̃ jt, z̃ j′ t)

∂z2
j′ t

h2
2v2]

× k(u)k(v)dudvdz jtdz j′ t

= O(h2
1) + O(h2

2).

where O(h1h2) disappears because the geometric mean is less than or equal to the arithmetic
mean.

By the similar argument we have,&
f f +g2dudvdz jtdz j′ t = O(h2

1) + O(h2
2)

and &
f f +gg+dudvdz jtdz j′ t = O(h2

1) + O(h2
2)

Therefore, we conclude that

h−1
1 h−1

2 E
{[

g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)
]

×
[
g(z jτ, z j′τ) − E(x̃⊤τ γ̄u | z jτ, z j′τ)

]
k
(
z jt − z jτ

h1

)
k
(
z j′ t − z j′τ

h2

) }
= E

{[
g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)

]2 f (z jt, z j′ t)
}
+ O(h2

1) + O(h2
2)

□
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Lemma D.9. Under the alternative hypothesis,

P(|Φ̂ − E
{[

g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)
]2 f (z jt, z j′ t)

}
− O(h2

1) − O(h2
2)| > ϵ)

≤ C1T 2(e−C2h2
1h2

2Nϵ2/J log2 J + e−C2N/J) + C̃1e−C̃2h2
1h2

2T ϵ2
.

The problem is to choose the tuning parameters to separate the nulls from the alternatives.
We use a theorem to conclude our arguments for selecting non-separating alternatives. Moreover,
if the non-separating alternatives are well chosen, we can determine the preference parameters
estimated by the 2SLS.

We rely on the two lemmas that for the null:

P(|Φ̂| > ϵ) ≤ C1T 2(e−C2h2
1h2

2Nϵ2/J log2 J + e−C2N/J) + C̃1e−C̃2h1h2T ϵ2
,

and for the alternative:

P(|Φ̂ − E
{[

g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)
]2 f (z jt, z j′ t)

}
− O(h2

1) − O(h2
2)| > ϵ)

≤ C1T 2(e−C2h2
1h2

2Nϵ2/J log2 J + e−C2N/J) + C̃1e−C̃2h2
1h2

2T ϵ2
.

Lemma D.10. Assume log J = o(h1h2T ), JT log2 J/h1h2 = o(N), and h1h2 = o(1). Under the

null hypothesis,

P(|Φ̂| < c0

√
log(J ∨ T )/h1h2T ) > 1 − c1(J ∨ T )−c2 ,

and under the alternative hypothesis,

P(|Φ̂| > c0

√
log(J ∨ T )/h1h2T ) > 1 − c1(J ∨ T )−c2

for some absolute constant c0 > 0, c1 > 0, and c2 > 2.

Proof. We begin with the null hypothesis:

P(|Φ̂| > ϵ) ≤ C1T 2(e−C2h2
1h2

2Nϵ2/J log2 J + e−C2N/J) + C̃1e−C̃2h1h2T ϵ2

≤ C1T 2(e−C2h2
1h2

2 JT log2 Jϵ2/h1h2 J log2 J + e−C2 JT log2 J/h1h2 J) + C̃1e−C̃2h1h2T ϵ2

≤ C1T 2(e−C2h1h2T ϵ2
+ e−C2T log2 J/h1h2) + C̃1e−C̃2h1h2T ϵ2

.
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Therefore,

P(|Φ̂| > c0

√
log(J ∨ T )/h1h2T ) ≤ C1T 2(e−c2

0C2 log(J∨T ) + e−C2T log2 J/h1h2) + C̃1e−c2
0C̃2 log(J∨T )

≤ C1T 2(e−c2
0C2 log(J∨T ) + e−c̃0C2 log2(J∨T )) + C̃1e−c2

0C̃2 log(J∨T )

≤
C1T 2

(J ∨ T )c2
0C2
+

C1T 2

(J ∨ T )c̃0C2 log(J∨T ) +
C̃1

(J ∨ T )c2
0C2

≤
C1T 2

(J ∨ T )c2
0C2
+

c̃C1T 2

(J ∨ T )c2
0C2
+

C̃1

(J ∨ T )c2
0C2

≤ c1,1(J ∨ T )−2

where c0 = 2
√

1
C2

.
For the alternative hypothesis,

P(|Φ̂ − E
{[

g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)
]2 f (z jt, z j′ t)

}
− O(h2

1) − O(h2
2)| > ϵ)

≤ C1T 2(e−C2h2
1h2

2Nϵ2/J log2 J + e−C2N/J) + C̃1e−C̃2h2
1h2

2T ϵ2

≤ C1T 2(e−C̃2h1h2T ϵ2
+ e−C2 JT log2 J/h1h2 J) + C̃1e−C̃2h2

1h2
2T ϵ2

For simplicity we denote cE := E
{[

g(z jt, z j′ t) − E(x̃⊤t γ̄u | z jt, z j′ t)
]2 f (z jt, z j′ t)

}
we have

P(|Φ̂ − cE − O(h2
1) − O(h2

2)| <
cE

2
) > 1 − [C1T 2(e−4c2

EC̃2h1h2T + e−C2 JT log2 J/h1h2 J) + C̃1e−4c2
EC̃2h2

1h2
2T ]

Since cE > 0 by definition, we further have

P(−
cE

2
< Φ̂ − cE − O(h2

1) − O(h2
2) <

cE

2
) > 1 − [C1T 2(e−4c2

EC̃2h1h2T + e−C2 JT log2 J/h1h2 J) + C̃1e−4c2
EC̃2h2

1h2
2T ]

P(
cE

2
< Φ̂ − O(h2

1) − O(h2
2) <

3cE

2
) > 1 − [C1T 2(e−4c2

EC̃2h1h2T + e−C2 JT log2 J/h1h2 J) + C̃1e−4c2
EC̃2h2

1h2
2T ]

By a similar argument, we can have

P
(
Φ̂ >

cE

2
+ O(h2

1) + O(h2
2)
)
> 1 − c2,1(J ∨ T )−2

Since h1 = o(1) and h2 = o(1), there exists TE such that if T > TE, O(h2
1) + O(h2

2) > − cs
4 .

Therefore,

P
(
Φ̂ >

cE

4

)
> 1 − c2,1(J ∨ T )−2

for T > TE.
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We want to show that there exists c̃2,1 such that

P
(
Φ̂ >

cE

4

)
> 1 − c̃2,1(J ∨ T )−2.

for any T .
With the fact that

P
(
Φ̂ >

cE

4

)
> 0

for T < TE where we also have J < eTE ,

P
(
Φ̂ >

cE

4

)
> 1 − (eTE ∨ TE)2(J ∨ T )−2.

Thus, c1 = max{c2,1, (eTE ∨ TE)2} satisfies the conditions in the Lemma for the alternative
hypothesis. □

This lemma suggests that increasing the number of markets is crucial for achieving sufficient
power in the test. When setting the threshold, we also consider the number of alternatives; a
higher threshold increases the likelihood that the test fails to reject the null hypothesis. Intu-
itively, it may seem that having more alternatives would strengthen the test. However, under
the alternative hypothesis, despite this initial impression, an excessive number of alternatives
does not improve the test’s effectiveness because the bound for the alternative is not tight. The
power of the test primarily comes from the number of markets. Assuming log J = o(T ), adjust-
ing the threshold by log J does not hinder the identification of the alternative hypothesis. Since
log J = o(T ), a large number of alternatives also requires a large number of markets. We include
J in log(T ∨ J) because if log J = o(T ), incorporating log J into the test can help identify pure
alternatives without significantly affecting the ability to distinguish non-pure alternatives. In the
case of cross-validation, log J would be absorbed into the constant term.

Theorem 4. (Pure Alternatives and Preference Parameters) Suppose Assumption 1 and 5 holds.

Choose the tuning parameter η = c0
√

log(J ∨ T )/h1h2T for some c0 > 0. With probability

1 − c1(J ∨ T )−c2 for some c1>0 and c2>0 such that

Î0 = I0

and for any 0 < ϵ < 2

P(∥γ̂ − γ∥2 > ϵ) < C1Te−C2T ϵ2
+ c1(J ∨ T )−c2 .
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for some C1>0 and C2>0.

Proof. For the first part of the theorem, when ( j′, j) is a pair of pure alternatives for the same
type,

P(|Φ̂| < c0

√
log(J ∨ T )/h1h2T ) > 1 − c1(J ∨ T )−c̃2 ,

and when ( j′, j) is not a pair of pure alternatives for the same type,

P(|Φ̂| > c0

√
log(J ∨ T )/h1h2T ) > 1 − c1(J ∨ T )−c̃2

for some absolute constant c0 > 0, c1 > 0, and c̃2 > 2. This means that

min{P(selected | a pair of pures),P(not selected | not a pair of pures)} > 1 − c1(J ∨ T )−c̃2 .

We therefore have

P(Î0 = I0) ≥ P(
J(J − 1)

2
tests are correct)

≥ 1 −
J(J − 1)

2
c1(J ∨ T )−c̃2 > 1 − c1(J ∨ T )−c2

for some c1>0 and c2>0 by the union bound.
For the second part of the theorem, we know

P
(
∥γ̂ j j′ − γK

k ∥2 > ϵ;∃k s.t. j, j′ ∈ I(k)
)
< C1Te−C2T ϵ2

for some positive C1 and C2 by Lemma 5. We can show that

P
(
∥γ̂K − γK∥2 > ϵ | Î0 = I0

)
< C1Te−C2T ϵ2

by the union bound. Then,

P
(
∥γ̂K − γK∥2 > ϵ

)
= P

(
{∥γ̂K − γK∥2 > ϵ} ∩ {Î0 = I0}

)
+ P({∥γ̂K − γK∥2 > ϵ} ∩ {Î0 , I0})

≤ P
(
∥γ̂K − γK∥2 > ϵ | Î0 = I0

)
P

(
Î0 = I0

)
+ P

(
Î0 , I0

)
< C1Te−C2T ϵ2

+ c1(J ∨ T )−c2

□
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E Fixed effects and probabilities of types

Not explicitly, we choose the tuning parameter as η = c0
√

log(J ∨ T )/h1h2T for some c0 > 0
without being clear. This section discusses how to estimate the fixed effects. Define

M(ẽ) = E
[
σ−1

jt (ẽ, I0)ẑ⊤jt
] [

ẑ jtσ
−1
jt (ẽ, I0)

]
,

MJT (γ̃, ẽ) =
∑

j

∑
t

∑
τ,t

1
JT (T − 1)

σ−1
jt (Î0)ẑ⊤jtẑ jτσ

−1
jτ (ẽ, Î0)

M̂JT (ẽ) =
∑

j

∑
t

∑
τ,t

1
JT (T − 1)

σ̂−1
jt (ẽ, Î0)ẑ⊤jtẑ jτσ̂

−1
jτ (ẽ, Î0)

where ŝ and γ̂. We also have

ê = argminẽM̂JT (ẽ)

and we want to show that M(ê) is close to M(eI0). By definition of the minimization problem, we
notice M̂JT (ê) ≤ M̂JT (eI0) and M(eI0) ≤ M̂JT (ê), so

|M(ê) − M(eI0)| ≤ |M̂JT (ê) − M(ê)| + |M̂JT (eI0) − M(eI0)|

≤ |M̂JT (ê) − MJT (ê)| + |MJT (ê) − M(ê)| + |M̂JT (eI0) − MJT (eI0)| + |MJT (eI0) − M(eI0)|

where the second inequality is the triangular inequality.
Equation (13) gives ξ jt = σ̂

−1
jt (ẽ• j, ξ̃

K
t ) from the inverse function:

ŝ jt =
∑

k

ẽk j ŝ jkte
λkξ jt+x⊤jtβ̂k−α̂k p jk t

eξ̃ jk t+x⊤jtβ̂k−α̂k p jk t
(13)

sup
e∈E
|M̂JT (e) − MJT (e)| < m1|| log Ŝ − log S ||max + m2||γ̂

K − γK ||2

Lemma E.1. Under assumption, for any ϵ > 0,

P(|M(ê) − M(eI0)| > ϵ) < C1Te−C2T ϵ2
+ c1(J ∨ T )−c2

for some constants, c1 > 0, c2 > 0, C1 > 0 and C2 > 0.
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Proof. By the union bounds,

P(|M(ê) − M(eI0)| > ϵ) < P(|M̂JT (ê) − MJT (ê)| >
ϵ

4
) + P(|M̂JT (eI0) − MJT (eI0)| >

ϵ

4
)

+ P(|MJT (ê) − M(ê)| >
ϵ

4
) + P(|MJT (eI0) − M(eI0)| >

ϵ

4
)

≤ 2P(sup
e
|M̂JT (e) − M(e)| >

ϵ

4
) + 2P(sup

e
|MJT (e) − M(e)| >

ϵ

4
)

≤ 2 sup
e

P(|M̂JT (e) − M(e)| >
ϵ

4
) + 2 sup

e
P(|MJT (e) − M(e)| >

ϵ

4
)

≤ C1e−C2T ϵ2
+ c1(J ∨ T )−c2

□

Theorem 5. Under Assumptions 1, 5, and 6, for any ϵ > 0,

P(||ê − eI0 ||22 > ϵ) < C1e−C2T ϵ2/J2
+ c1(J ∨ T )−c2 ,

for some constant C1 > 0 and C2 > 0. And

P(|ξ̂ jt − ξ jt| > ϵ) < C1e−C2T ϵ2/J2
+C3e−C4 Jϵ2

+ c1(J ∨ T )−c2 ,

for some constants C1 > 0,C2 > 0,C3 > 0, and C4 > 0.

Proof. Using Taylor expansion on the moment function, we have,

P(|M(ê) − M(eI0)| > ϵ) = P(
1
2

(ê − eI0)⊤|HM(e)|(ê − eI0) > ϵ)

> P(
C3||ê − eI0 ||22

J
> ϵ)

Therefore, we have

P(||ê − eI0 ||22 >
Jϵ
C3

) < C1e−C2T ϵ2
⇒ P(||ê − eI0 ||22 > ϵ) < C1e−C̃2T ϵ2/J2

.

Define

ςk(ẽ, ξ̃K
t ) = E

[
σ−1

jt (ẽ, I0, ξ̃
K
t ) | j < J − I(k)

]
,

ςkJ(ẽ) =
∑

j<J−I(k)

σ−1
jt (ẽ, I0, ξ̃

K
t ),

ς̂kJ(ẽ, ξ̃K
t ) =

∑
j<J−I(k)

σ̂−1
jt (ẽ, I0, ξ̃

K
t ).
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Similarly, we can show that

P(|ξ̂ jt − ξ jt| > ϵ) < C1e−C2T ϵ2/J2
+C3e−C4 Jϵ2

.

□

Theorem 6. Under Assumptions 1, 5, and 6, for any ϵ > 0,

P(||π̂kt − πkt||
2
2 > ϵ) < C1e−C2T ϵ2/J2

+C3e−C4 Jϵ2
+ c1(J ∨ T )−c2 .

for some constants C1 > 0,C2 > 0,C3 > 0, and C4 > 0.

Proof. We aim to bound the difference between πkt and π̂kt. The expressions for πkt and π̂kt are

πkt =
eλkξ jk t+x⊤jk tβk−αk p jk t

s jkt
∑

i∈J eI0
kie

ξit+x⊤it βk−αk pit
,

π̂kt =
eλk ξ̂ jk t+x⊤jk tβ̂k−α̂k p jk t

s jkt
∑

i∈J êI0
kie

ξit+x⊤it β̂k−α̂k pit
.

The denominators for πkt and π̂kt are

D = s jkt

∑
i∈J

eI0
kie

ξit+x⊤it βk−αk pit ,

D̂ = s jkt

∑
i∈J

êI0
kie

ξit+x⊤it β̂k−α̂k pit .

The difference between the two denominators |D − D̂| can be expanded as

|D − D̂| =

∣∣∣∣∣∣∣s jkt

∑
i∈J

(
eI0

kie
ξit+x⊤it βk−αk pit − êI0

kie
ξit+x⊤it β̂k−α̂k pit

)∣∣∣∣∣∣∣
≤ s jkt

∑
i∈J

eI0
kie

ξit+x⊤it βk−αk pit
(
|êI0

ki − eI0
ki | + |x

⊤
it (β̂k − βk)| + |(α̂k − αk)pit|

)
.

We now consider the difference between the inverses of the denominators. Using the mean
value theorem for inverses, we have ∣∣∣∣∣ 1

D
−

1
D̂

∣∣∣∣∣ = |D − D̂|
|D||D̂|

.

Specifically, we assume D, D̂ ≥ CD > 0 where CD is a positive constant. Therefore, the
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inverse difference is bounded as: ∣∣∣∣∣ 1
D
−

1
D̂

∣∣∣∣∣ ≤ |D − D̂|
C2

D

.

Now, combining the bounds on the numerator and the inverse of the denominator, we obtain
the total bound for |πkt − π̂kt|:

|πkt − π̂kt| ≤
|F − F̂|

CD
+

F
C2

D

|D − D̂|,

where F and F̂ are the numerators of πkt and π̂kt, respectively.
Given the bounds on the numerator and denominator differences, we conclude:

|πkt − π̂kt| ≤ C
(
|ξ̂ jkt − ξ jkt| + |x⊤jkt(β̂k − βk)| + |(α̂k − αk)p jkt| +max

i∈J
|êI0

ki − eI0
ki |

)
,

where C is a constant that depends on the lower bound CD for the denominators.

P(|πkt − π̂kt| > ϵ) ≤ P
[
C

(
|ξ̂ jkt − ξ jkt| + ||β̂k − βk||2 + |α̂k − αk| +max

i∈J
|êI0

ki − eI0
ki | > ϵ

)]
≤ C1e−C2T ϵ2/J2

+C3e−C4 Jϵ2
+ c1(J ∨ T )−c2 .

□

F Tools and properties in high dimensions

F.1 Concentration inequalities, union bounds, and U statistics

Lemma F.1. (Markov’s Inequality) If X is a nonnegative random variable and ϵ > 0, then the

probability that X is at least ϵ is at most the expectation of X divided by ϵ

P(X ≥ ϵ) ≤
E(X)
ϵ

.

Lemma F.2. (Hoeffding’s Inequality) Let X1, X2, . . . , Xn be independent random variables such

that Xi ∈ [ai, bi] for i ∈ [n]. Let S n =
∑n

i=1 Xi. Then, for any ϵ > 0,

P (S n − E(S n) ≥ ϵ) ≤ e−2ϵ2/
∑n

i=1(bi−ai)2
, P (E(S n) − S n ≥ ϵ) ≤ e−2ϵ2/

∑n
i=1(bi−ai)2

.
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and

P (|S n − E(S n)| ≥ ϵ) ≤ 2e−2ϵ2/
∑n

i=1(bi−ai)2
.

Definition 4. (Sub-Gaussian) A random variable X is called sub-Gaussian if its tail probabilities

decay at least as fast as those of a Gaussian distribution. Specifically, X is sub-Gaussian if there

exists a positive constant σ2 > 0 such that for all ϵ > 0,

P(|X| > ϵ) ≤ 2e−ϵ
2/2σ2

.

An equivalent definition involves the moment-generating function (MGF). A random variable

X is sub-Gaussian if there exists a constant σ2 > 0 such that for all λ ∈ R,

E(eλX) ≤ eλ
2σ2/2.

In both definitions, σ2 is often referred to as the sub-Gaussian parameter and is similar to
the variance in the Gaussian distribution, controlling the rate of tail decay and the growth of the
MGF.

Lemma F.3. (Bounded Random Variable) Let X be a random variable such that a ≤ X ≤ b almost

surely, where a and b are constants. Then X is sub-Gaussian with variance proxy parameter

σ2 =
(b−a)2

4 .

Lemma F.4. (Product of sub-Gaussian Variable) Let X be a bounded random variable such that

|X| ≤ M almost surely, for some M > 0, and let Y be a sub-Gaussian random variable with

parameter σ. Then, the product Z = XY is sub-Gaussian with a parameter at most Mσ.

Proof. By definition, X is sub-Gaussian if there exists a constant σ2 > 0 such that for all λ ∈ R
E

[
eλX

]
≤ eλ

2σ2/2. Consider the MGF of Z = YX, since |Y | ≤ M, it follows that

E(eλYX) ≤ E(eλM|X|) ≤ eλ
2 M2σ2/2,

by using the sub-Gaussian property of |X| (it is sub-Gaussian by the first definition), therefore

E(eλZ) ≤ eλ
2 M2σ2/2.

The inequality above shows that XY is sub-Gaussian with parameter M2σ2. □

Lemma F.5. (Union Bound) Let A1, A2, . . . , An be events in a probability space. Then, the prob-

ability that at least one of these events occurs is bounded above by the sum of their probabilities.
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Formally, the union bound is given by

P

 n⋃
i=1

Ai

 ≤ n∑
i=1

P(Ai).

The following lemmas are standard in the literature and are presented here to streamline our
subsequent proofs of estimates. They also offer insights into how to bound tail probabilities.

Lemma F.6. (Union Bound Variation) Let X and Y be random variables. Then, for any ϵ > 0,

the following bound holds:

P(|X||Y | > ϵ) ≤ P(|X| >
√
ϵ) + P(|Y | >

√
ϵ).

Proof. The event |X||Y | > ϵ implies that either |X| or |Y |must be sufficiently large for their product
to exceed ϵ. More precisely, the event {|X||Y | > ϵ} can be rewritten as

{|X||Y | > ϵ} ⊆ {|X| >
√
ϵ} ∪ {|Y | >

√
ϵ}.

which means that at least one of the events {|X| >
√
ϵ} and {|Y | >

√
ϵ} happens. Using the union

bound, we have

P(|X||Y | > ϵ) ≤ P(|X| >
√
ϵ) + P(|Y | >

√
ϵ).

□

Lemma F.7. (Union Bound Variation) Given random variables Xl for l ∈ [L] > 0, assume there

exists functions fl for any ϵ > 0,P(Xl > ϵ) < gl(ϵ). Then, that the probability of the summation

of the random variables is at least ϵ can be bounded as:

P(
∑
l∈[L]

Xl > ϵ) <
∑
l∈[L]

gl(
ϵ

L
).

Proof. We notice that

P(
∑
l∈[L]

Xl > ϵ) ≤ P(max
l∈[L]

Xl >
ϵ

L
).

This is because the set on the equation’s left is a subset of the set on the right; otherwise, if all
Xl ≤ ϵ/L, the summation will be smaller than L.
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Then we have,

P(max
l∈[L]

Xl > ϵ/L) = P(
⋃
l∈[L]

{Xl > ϵ/L}) ≤
∑
l∈[L]

P(Xl > ϵ/L) <
∑
l∈[L]

gl(
ϵ

L
),

where the first inequality is from the Lemma F.5 of the union bound, and the second inequality
holds by assumption. □

Lemma F.8. (Constant in Bound) Given a random variable X for n ≥ 1, assume there exists

function g for any ϵ > 0, P(X > ϵ) < g(ϵ). Then for any c > 0

P(cXn > ϵ) < g(
ϵ

c
).

Proof. The proof is direct by noticing

P(cX > ϵ) = P(X >
ϵ

c
).

□

Lemma F.9. (Bound of Average) Given random variables Xl for l ∈ [L] > 0, assume there exists

functions gl where for any ϵ > 0,P(Xl > ϵ) < gl(ϵ). Then, we have the bound for the average of

these random variables:

P(
1
L

∑
l∈[L]

Xl > ϵ) <
∑
l∈[L]

gl(ϵ).

Proof. This comes directly from Lemma F.7 and Lemma F.8. □

Lemma F.10. (Upper-bound of Bound) Given random variables X and Y and assume Y ≥ X

almost surely, then for any constant ϵ

P(X > ϵ) ≤ P(Y > ϵ)

Proof. This is because if an event satisfies X > ϵ on the probability space, the event satisfies
Y > ϵ by the assumption that Y ≥ X. □

The Lemma F.10 implies that we can use the tail bound of Y to derive the tail bound for X.
By contrast, we also have P(X > ϵ1) ≥ P(X > ϵ2) for ϵ1 ≤ ϵ2 to derive the bound, which comes
from the definition of the CDF. We use these facts regularly without explicitly mentioning them
throughout the proofs.

We nonparametrically test the form of the function where U Statistics are helpful.
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Definition 5. (U Statistics) A U-statistic is defined for a set of T observations X1, X2, . . . , XT and

is of the form:

UT =
1(
T
k

) ∑
1≤i1<i2<···<ik≤T

h(Xi1 , Xi2 , . . . , Xik),

where h(·) is a symmetric kernel function of k variables (the order of the U-statistic), meaning

that the function does not change if the inputs are permuted, and k ≤ T.

Lemma F.11. (Hoeffding’s Inequality for U-Statistics) Let UT be a U-statistic of order k with

kernel h(Xi1 , Xi2 , . . . , Xik), where X1, X2, . . . , XT are independent random variables, and assume

that the kernel h is bounded by

|h(Xi1 , Xi2 , . . . , Xik)| ≤ M.

Then, Hoeffding’s inequality for U-statistics is given by

P (UT − E[UT ] ≥ ϵ) ≤ 2e−T ϵ2/2kM2
,

where ϵ is the deviation threshold.

Hoeffding’s inequality for the U statistics is most commonly used because of its simplicity.
However, like Lemma F.15, when the numerator in the power of the exponential is tiny, the bound
does not perform well. Specifically, when the ϵ is small, the power of the square on it will require
the number of observations T to be large—the recent development of Bernstein’s version of the
concentration parameter deals with this problem.

Lemma F.12. (Bernstein’s Inequality for U-Statistics) Let UT be a U-statistic of order k with

kernel h(Xi1 , Xi2 , . . . , Xik), where X1, X2, . . . , XT are independent random variables, and assume

that the kernel h is bounded by

|h(Xi1 , Xi2 , . . . , Xik)| ≤ M.

Then Bernstein’s inequality for U-statistics is given by

P (|UT − E[UT ]| > ϵ) ≤ 2e−T ϵ2/(4kσ2+ 2
3 kMϵ),

where σ2 is the variance of h(Xi1 , Xi2 , . . . , Xik).

This inequality is useful when we estimate the properties of an estimator condition on events.
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We conclude with another commonly used fact which is helpful for our discussion of the 2SLS
later.

Lemma F.13. Let X ∈ RT×p and Z ∈ RT×q be matrices such that (a) The eigenvalues of 1
T Z⊤Z

are strictly positive. (b) The singular values of 1
T Z⊤X are strictly positive. Then, the eigenvalues

of the matrix 1
T X⊤Z(Z⊤Z)−1Z⊤X are strictly positive.

Proof. Let A = 1
T X⊤Z(Z⊤Z)−1Z⊤X. We aim to show that the eigenvalues of A are bounded from

below. Consider the quadratic form of A,

v⊤Av =
1
T

v⊤X⊤Z(Z⊤Z)−1Z⊤Xv =
1
T

w⊤(Z⊤Z)−1w,

where w = Z⊤Xv. Let Z⊤Z = UΛU⊤, where U is an orthogonal matrix (containing the eigenvec-
tors of Z⊤Z) and Λ = diag(λ1, . . . , λq) is a diagonal matrix with the eigenvalues of Z⊤Z, denoted
λ1, λ2, . . . , λq, which are all strictly positive.

Thus, (Z⊤Z)−1 = UΛ−1U⊤, where Λ−1 = diag(λ−1
1 , . . . , λ

−1
q ).

Now, we transform the quadratic form:

w⊤(Z⊤Z)−1w = (U⊤w)⊤Λ−1(U⊤w). (14)

Let w′ = U⊤w, and hence the quadratic form becomes:

w⊤(Z⊤Z)−1w =
q∑

i=1

λ−1
i w′2i ≥

1
λmin
∥w′∥22, (15)

where w′i are the components of w′ and the last inequality is from the Cauchy Schwarz (CS)
inequality. In the matrix format, this is equivalent to

w⊤(Z⊤Z)−1w =
1
T

w⊤(
Z⊤Z

T
)−1w ≥

∥w∥22
Tλmin

(
Z⊤Z

T

) ,
Given the definition of w,

∥w∥22 = v⊤X⊤ZZ⊤Xv ≥ T 2σ2
min∥v∥

2
2,

where σmin is the smallest singular value of 1
T X⊤Z. Then we have

w⊤(Z⊤Z)−1w ≥
Tσ2

min∥v∥
2

λmin

(
Z⊤Z

T

) .
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Thus, by the property of Rayleigh Quotient, the lower bound on the eigenvalues of A is

λ(A) ≥
σ2

min

λmin

(
Z′Z
T

) > 0.

□

F.2 Non-asymptotic properties for the empirical shares

Given alternative j and market t, the observed sale is Y jt, we have that Y jt ∼ Binomial(N, s jt) and
ŝ jt =

Y jt

N .

Lemma F.14. (Bound of Share) If all parameter spaces are compact, mink∈[K],t∈[T ] πkt > φπ for

some φπ > 0, and mink∈[K]
[Jk]
[J] > φJ for some φJ > 0, then there exist constants φ+ > 0 and φ− > 0

such that

φ−

J
< max

j∈[J],t∈[T ]
s jt <

φ+

J
.

Proof. We use constants φ−δ < δk jt < φ+δ to reflect that δk jt is uniformly bounded for any type k,
alternative j, and market t, since it is from the linear combination of bounded variables. We have

s jt =
∑
k∈[K]

πkt
1Jk( j)eδk jt∑

i∈Jk
eδkit

by definition.
We also have∑

k∈[K]

πkt
1Jk( j)eδk jt∑

i∈Jk
eδkit
≤

∑
k∈[K]

πkt
eφ
+
δ∑

i∈Jk
eφ−δ
=

eφ
+
δ∑

i∈Jk
eφ−δ
≤

eφ
+
δ

φJ Jeφ−δ
<
φ+

J

where the second inequality comes from the sum of πkt equals to 1.
On the other side,

∑
k∈[K]

πkt
1Jk( j)eδk jt∑

i∈Jk
eδkit
≥

∑
k∈[K]

φπ
eφ
−
δ∑

i∈Jk
eφ+δ
≥

Kφπeφ
−
δ∑

i∈Jk
eφ+δ
≥

Kφπeφ
−
δ

Jeφ+δ
>
φ−

J
.

□

With these two bounds, we can get some practical properties to observe that the empirical
shares are more significant than specific values with high probabilities.
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Lemma F.15. (Hoeffding’s Threshold for Empirical Share) Given alternative j ∈ [J] and market

t ∈ [T ], the probability that ŝ jt exceeds a positive value φ where φ < s jt can be bounded as

follows:

P
(
ŝ jt ≥ φ

)
≥ 1 − e−2N(s jt−φ)2

.

Proof. The proof follows from Lemma F.2 of Hoeffding’s Inequality. We notice

P
(
ŝ jt > φ

)
= 1 − P(ŝ jt ≤ φ) = 1 − P

(
Y jt ≤ Nφ

)
= 1 − P

[
Ns jt − Y jt ≥ N(s jt − φ)

]
≥ 1 − e−2N(s jt−φ)2

,

where in the last inequality, we use the property of binomial that E(Y jt) = Ns jt and ϵ = s jt − φ >

0. □

Lemma F.16. (Hoeffding’s Bound for Empirical Shares) Given alternative j ∈ [J] and market

t ∈ [T ], for any ϵ > 0 the probability

P(|ŝ jt − s jt| ≥ ϵ) ≤ 2e−2Nϵ2

Proof. We use the Hoeffding’s inequality,

P(|ŝ jt − s jt| ≥ ϵ) = P(N |ŝ jt − s jt| ≥ Nϵ) = P(|Y jt − Ns jt| ≥ Nϵ) ≤ 2e−2Nϵ2

because Y jt is the summation of the independent Bernoulli trials and E(Y jt) = Ns jt. □

Hoeffding uses boundedness and independence. s jt or ϵ appears in the power of square in the
bound; therefore, it is not very good when s jt is small. We can use the Chernoff bound to get a
tighter bound of a binomial distribution when s jt or ϵ is small.

Lemma F.17. (Chernoff’s Bound for Binomial Distribution) Given alternative j ∈ [J] and market

t ∈ [T ], for any 0 < κ < 1, the following bounds hold:

Upper tail bound: P[Y jt ≥ Ns jt(1 + κ)] ≤ e−κ
2Ns jt/3

Lower tail bound: P[Y jt ≤ Ns jt(1 − κ)] ≤ e−κ
2Ns jt/2

Lemma F.18. (Chernoff’s Threshold for Empirical Share) Given alternative j ∈ [J] and market

t ∈ [T ], the probability that ŝ jt exceeds a positive value φ where φ < s jt can be bounded as
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follows:

P(ŝ jt > φ) > 1 − e−N(s jt−φ)2/2s jt .

Proof. We set κ = s jt−φ

s jt
and thus:

P(ŝ jt ≤ φ) ≤ e−N(s jt−φ)2/2s jt .

for the Chernoff lower bound. We can choose κ = s jt−φ

s jt
since s jt−φ

s jt
> 0 due to the fact that

s jt − φ > 0 and s jt > 0. s jt−φ

s jt
< 1 is by 1 − φ

s jt
< 1 from φ > 0. □

Lemma F.19. (Chernoff’s Bound for Empirical Share) Given alternative j ∈ [J] and market

t ∈ [T ], for any 0 < ϵ < s jt the probability

P(|ŝ jt − s jt| ≥ ϵ) ≤ e−Nϵ2/3s jt

Proof. Similarly, let κ = ϵ
s jt

P(|ŝ jt − s jt| ≥ ϵ) ≤ e−Nϵ2/3s jt .

□

Lemma F.20. Given alternative j ∈ [J] and market t ∈ [T ], if φ0
J < s jt <

φ1
J , we have a high

probability that the empirical share ŝ jt is larger than φ0
2J —that is

P(ŝ jt >
φ0

2J
) > 1 − e−Nφ2

0/8c1 J

which is equivalent to

P(ŝ jt ≤
φ0

2J
) ≤ e−Nφ2

0/8c1 J.

Proof. This comes directly from Lemma F.18 by setting φ = φ0
2J . To be specific,

P(ŝ jt ≤
φ0

2J
) ≤ e−N(s jt−φ0/2J)2/2s jt ≤ e−Nφ2

0/8J2 s jt ≤ e−Nφ2
0/8φ1 J

where the second inequality is from the fact that s jt is bounded below by φ0
J and the third inequal-

ity comes from fact that s jt is bounded above by φ1
J . □

The following sequence of lemmas shows that after dropping some small shares, the value
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|1{ŝ jt > δ} log ŝ jt − log s jt| will be close to zero with high probability when the number of con-
sumers is relatively large—not rigorously speaking when N >> J.

The distance of 1{ŝ jt > δ} log ŝ jt and log s jt can be decomposed into two parts |1{ŝ jt >

δ}(log ŝ jt − log s jt)|+|1{ŝ jt ≤ δ} log s jt|. We deal with |1{ŝ jt > δ}(log ŝ jt − log s jt)| first. The
idea is to observe that when ŝ jt is not close to zero, we can check the distance of logarithmic
distance by ŝ jt − s jt directly. Meanwhile, the probability that ŝ jt close to zero is small. The tuning
parameter is to ensure that the logarithms of shares are well-defined.

Lemma F.21. Given alternative j ∈ [J] in market t ∈ [T ], assume utilities are bounded such that
φ−

J < s jt <
φ+

J . Given an alternative j in market t, for any 0 < ϵ < 2,

P[| log ŝ jt − log s jt| > ϵ] < C1(e−C2Nϵ2/J + e−C2N/J).

where C1 and C2 are positive constants.

Proof. We decompose P[| log ŝ jt− log s jt| > ϵ] conditional on two events {ŝ jt >
φ−

2J } and {ŝ jt ≤
φ−

2J },
so that

P[| log ŝ jt − log s jt| > ϵ]

= P[| log ŝ jt − log s jt| > ϵ | ŝ jt >
φ−

2J
]P(ŝ jt >

φ−

2J
)︸                                                       ︷︷                                                       ︸

H1

+P[| log ŝ jt − log s jt| > ϵ | ŝ jt ≤
φ−

2J
]P(ŝ jt ≤

φ−

2J
)︸                                                       ︷︷                                                       ︸

H2

.

where φ− is the lower bound from Lemma F.14.
Firstly, for H1,

P(| log ŝ jt − log s jt| > ϵ | ŝ jt >
φ−

2J
)P(ŝ jt >

φ−

2J
) ≤ P(| log ŝ jt − log s jt| > ϵ | ŝ jt >

φ−

2J
).

We therefore would like to bound the value P(| log ŝ jt − log s jt| > ϵ | ŝ jt >
φ−

2J ) and we know

| log ŝ jt − log s jt| = | log(
ŝ jt − s jt

s jt
+ 1)| ≤ max(ŝ−1

jt , s
−1
jt )|ŝ jt − s jt|,

where we use the fact that x
1+x ≤ log(1 + x) ≤ x for x > −1 so | log(1 + x)| ≤ |max(x, x

1+x )| by
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taking x = ŝ jt−s jt

s jt
> −1. Then we have

P(| log ŝ jt − log s jt| > ϵ | ŝ jt >
φ−

2J
) ≤ P[max(ŝ−1

jt , s
−1
jt )|ŝ jt − s jt| > ϵ | ŝ jt >

φ−

2J
]

≤ P(
2J
φ−
|ŝ jt − s jt| > ϵ | ŝ jt >

φ−

2J
)

= P(|ŝ jt − s jt| >
φ−ϵ

2J
| ŝ jt >

φ−

2J
).

We use the law of total probability,

P(|ŝ jt − s jt| >
φ−ϵ

2J
| ŝ jt >

φ−

2J
) ≤

P(|ŝ jt − s jt| >
φ−ϵ

2J )

P(ŝ jt >
φ−

2J )
≤

P(|ŝ jt − s jt| >
φ−ϵ

2J )

1 − e−φ−2N/8C1 J

≲ e−φ
−Nϵ2/12J2 s jt ≤ e−φ

−2Nϵ2/6φ+J

where the second inequality is from Lemma F.18. With J = o(N), the denominator is bounded
by a constant. The first approximated inequality is from Lemma F.19 where we require ϵ < 2 so
φ−ϵ

2J < φ−ϵ

J < s jt.
Secondly, for H2,

P(| log ŝ jt − log s jt| > ϵ | ŝ jt <
φ−

2J
)P(ŝ jt <

φ−

2J
) ≤ P(ŝ jt <

φ−

2J
) ≲ e−φ

−2N/8C1 J,

where the second inequality is also given by Lemma F.18.
Therefore,

P[| log ŝ jt − log s jt| > ϵ] ≲ e−φ
−2Nϵ2/6φ+J + e−φ

−2N/8φ+J. (16)

and we can take the minimum of the constants in the exponential to get the desired result. □

With high probability, ŝ jt is well defined and log ŝ jt − log s jt is close to zero. If we drop the
not well-defined part of the random variable log ŝ jt− log s jt, it will also be close to zero with high
probability.

Lemma F.22. Given alternative j ∈ [J] in market t ∈ [T ], assume utilities are bounded such that
φ−

J < s jt <
φ+

J , J = o(N), and δ > 0. For any 0 < ϵ < 2,

P[|1{ŝ jt > δ}(log ŝ jt − log s jt)| > ϵ] < C1(e−C2Nϵ2/J2
+ e−C2N/J2

),

where C1 and C2 are positive constants.
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Proof. This holds since |1{ŝ jt > δ}(log ŝ jt − log s jt)| ≤ | log ŝ jt − log s jt| and we use Lemma
F.21. □

Lemma F.23. Given an alternative j ∈ [J] and market t ∈ [T ], assume utilities are bounded such

that φ−

J < s jt <
φ+

J and δ ≤ φ−

2J . For any ϵ > 0,

P(|1{ŝ jt ≤ δ} log s jt| > ϵ) < C1T (e−C2Nϵ2/J + e−C2N/J).

where C1 and C2 are positive constants.

Proof. We use a decomposition

P(|1{ŝ jt ≤ δ} log s jt| > ϵ)

= P(|1{ŝ jt ≤ δ} log s jt| > ϵ | ŝ jt ≥
φ−

2J
)P(ŝ jt ≥

φ−

2J
) + P(|1{ŝ jt ≤ δ} log s jt| > ϵ | ŝ jt <

φ−

2J
)P(ŝ jt <

φ−

2J
)

= P(|1{ŝ jt ≤ δ} log s jt| > ϵ | ŝ jt <
φ−

2J
)P(ŝ jt <

φ−

2J
) ≤ P(ŝ jt <

φ−

2J
) ≤ e−φ

−2N/8C1 J

where the second equality is from δ ≤ φ−

2J and the last inequality is by Lemma F.20 □

Lemma F.24. Given alternative j ∈ [J] in market t ∈ [T ], assume utilities are bounded such that
φ−

J < s jt <
φ+

J , J = o(N), and δ ≤ φ−

2J . For any 0 < ϵ < 2,

P(|1{ŝ jt > δ} log ŝ jt − log s jt| > ϵ) < C1T (e−C2Nϵ2/J + e−C2N/J).

where C1 and C2 are positive constants.

Proof. The inequality comes from the union bound. □

The following lemma suggests that if we sum the errors of the distances between the empirical
shares and probabilities over markets, we would like to have the data satisfying J log T << N to
get a small summation.

Lemma F.25. Given alternative j ∈ [J] and market t ∈ [T ], assume utilities are bounded such

that φ−

J < s jt <
φ+

J , J = o(N), and δ ≤ φ−

2J . For any 0 < ϵ < 2,

P(
1
T

∑
t

|1{ŝ jt > δ} log ŝ jt − log s jt| > ϵ) < C1T (e−C2Nϵ2/J + e−C2N/J).

where C1 and C2 are positive constants.
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Proof. we have

P(
∑

t

|1{ŝ jt > δ} log ŝ jt − log s jt| > T ϵ) ≲ T (e−C2Nϵ2/J + e−C2N/J)

by the union bound. □

Then, we show that the distance of some functions of the empirical shares and shares are
also close to zero with a high probability. The intuitions are the same as above and provide
foundations for the 2SLS estimator.

Lemma F.26. Given alternatives ( j, j
′

) ∈ [J] with bounded utilities such that φ−

J < s jt <
φ+

J and
φ−

J < s j′ t <
φ+

J and a uniformly bounded stochastic process vt(w) where w ∈ B and B is compact,

if J = o(N) and φ ≤ φ−

2J , then for any 0 < ϵ < 2

P
| sup

w∈B

1
T

∑
t

1{ŝ jt ∧ ŝ j′ t > φ}[
(
log ŝ jt − log ŝ j′ t − vt(w)

)2
−

(
log s jt − log s j′ t − vt(w)

)2
]| > ϵ


< C1T (e−C2Nϵ2/J log2 J + e−C2N/J log2 J)

where C1 and C2 are positive constants.

Proof. The goal is to bound

| sup
w∈B

1
T

∑
t

1{ŝ jt ∧ ŝ j′ t > φ}{[log ŝ jt − log ŝ j′ t − vt(w)]2 − [log s jt − log s j′ t − vt(w)]2}|.

We can instead bound,

sup
w∈B

1
T

∑
t

|1{ŝ jt ∧ ŝ j′ t > φ}{[log ŝ jt − log ŝ j′ t − vt(w)]2 − [log s jt − log s j′ t − vt(w)]2}|.

It is sufficient to check,

sup
w∈B

1
T

∑
t

|1{ŝ jt ∧ ŝ j′ t > φ}{[log ŝ jt − log ŝ j′ t − vt(w)]2 − [log s jt − log s j′ t − vt(w)]2}|

= sup
w∈B

1
T

∑
t

|1{ŝ jt ∧ ŝ j′ t > φ}[log ŝ jt − log ŝ j′ t − log s jt + log s j′ t]

[log ŝ jt − log ŝ j′ t + log s jt − log s j′ t − 2v(w)]|.
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Notice

P
{

sup
w∈B

1
T

∑
t

|1{ŝ jt ∧ ŝ j′ t > φ}[log ŝ jt − log ŝ j′ t − log s jt + log s j′ t]

[log ŝ jt − log ŝ j′ t + log s jt − log s j′ t − 2v(w)]| > ϵ
}

= P
{

sup
w∈B

∑
t

|1{ŝ jt ∧ ŝ j′ t > φ}[log ŝ jt − log ŝ j′ t − log s jt + log s j′ t]

[log ŝ jt − log ŝ j′ t + log s jt − log s j′ t − 2v(w)]| > T ϵ
}

≤ sup
w∈B

P
{∑

t

|1{ŝ jt ∧ ŝ j′ t > φ}[log ŝ jt − log ŝ j′ t − log s jt + log s j′ t]

[log ŝ jt − log ŝ j′ t + log s jt − log s j′ t − 2v(w)]| > T ϵ
}

≤ sup
w∈B

∑
t

P
{
|1{ŝ jt ∧ ŝ j′ t > φ}[log ŝ jt − log ŝ j′ t − log s jt + log s j′ t]

[log ŝ jt − log ŝ j′ t + log s jt − log s j′ t − 2v(w)]| > ϵ
}

where the first and second inequalities are from the union bound. Then, we have

sup
w∈B

∑
t

P
{
|1{ŝ jt ∧ ŝ j′ t > φ}[log ŝ jt − log ŝ j′ t − log s jt + log s j′ t]

[log ŝ jt − log ŝ j′ t + log s jt − log s j′ t − 2v(w)]| > ϵ
}

= sup
w∈B

∑
t

P
{
|1{ŝ jt ∧ ŝ j′ t > φ}[log ŝ jt − log ŝ j′ t − log s jt + log s j′ t]

[log ŝ jt − log ŝ j′ t + log s jt − log s j′ t − 2v(w)]| > ϵ | ŝ jt ∧ ŝ j′ t >
2c0

J

}
P(ŝ jt ∧ ŝ j′ t >

2c0

J
)

+ sup
w∈B

∑
t

P
{
|1{ŝ jt ∧ ŝ j′ t > φ}[log ŝ jt − log ŝ j′ t − log s jt + log s j′ t]

[log ŝ jt − log ŝ j′ t + log s jt − log s j′ t − 2v(w)]| > ϵ | ŝ jt ∧ ŝ j′ t <
2c0

J

}
P(ŝ jt ∧ ŝ j′ t <

2c0

J
).
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Therefore, to bound the sum, we need to concentrate on

H1 = sup
w∈B

∑
t

P
{
|1{ŝ jt ∧ ŝ j′ t > φ}[log ŝ jt − log ŝ j′ t − log s jt + log s j′ t]

[log ŝ jt − log ŝ j′ t + log s jt − log s j′ t − 2v(w)]| > ϵ | ŝ jt ∧ ŝ j′ t >
2c0

J

}
P(ŝ jt ∧ ŝ j′ t >

2c0

J
)

H2 = sup
w∈B

∑
t

P
{
|1{ŝ jt ∧ ŝ j′ t > φ}[log ŝ jt − log ŝ j′ t − log s jt + log s j′ t]

[log ŝ jt − log ŝ j′ t + log s jt − log s j′ t − 2v(w)]| > ϵ | ŝ jt ∧ ŝ j′ t <
2c0

J

}
P(ŝ jt ∧ ŝ j′ t <

2c0

J
).

We focus on H1 first

H1 ≤ T sup
w∈B

P
{
|1{ŝ jt ∧ ŝ j′ t > φ}| log ŝ jt − log ŝ j′ t − log s jt + log s j′ t|

(| log ŝ jt| + | log ŝ j′ t| + | log s jt| + | log s j′ t| + |2v(w)|)| > ϵ | ŝ jt ∧ ŝ j′ t >
2c0

J

}
P(ŝ jt ∧ ŝ j′ t >

2c0

J
)

≤ T sup
w∈B

P
{
| log ŝ jt − log ŝ j′ t − log s jt + log s j′ t|

(| log
2c0

J
| + | log

2c0

J
| + | log

c0

J
| + | log

c0

J
| + 2c2) > ϵ | ŝ jt ∧ ŝ j′ t >

2c0

J

}
≤ TP(C3 log J| log ŝ jt − log ŝ j′ t − log s jt + log s j′ t| > ϵ | ŝ jt ∧ ŝ j′ t >

2c0

J
)

≲ 2TP(C3 log J| log ŝ jt − log s jt| > ϵ | ŝ jt ∧ ŝ j′ t >
2c0

J
)

≤
2TP(C3 log J| log ŝ jt − log s jt| > ϵ)

P(ŝ jt ∧ ŝ j′ t >
2c0
J )

≤
2TP(| log ŝ jt − log s jt| >

ϵ
C3 log J )

1 − 2P(ŝ jt >
2c0
J )

≲ T (e−C2Nϵ2/J log2 J + e−C2N/J)

where the fourth inequality is from the law of total probability. The last inequality relies on
Lemma F.21 and J = o(n). Note that there is no guarantee that ϵ

C3 log J < 2 for any positive
constant C3, but we can take C3 large. c2 > 0 is the upper bound of |vt(w)| and C3 > 0 is a
constant. C1 > 0 and C2 > 0 are constants which do not depend on j and t. Then we discuss H2:

H2 ≤ TP(ŝ jt ∧ ŝ j′ t <
2φ−

J
) ≲ Te−C̃2N/J,

where the approximated inequality is from Lemma F.20 and C̃2 > 0 is a constant.
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Therefore, by the union bound, we have

P
| sup

w∈B

1
T

∑
t

1{ŝ jt ∧ ŝ j′ t > φ}[
(
log ŝ jt − log ŝ j′ t − vt(w)

)2
−

(
log s jt − log s j′ t − vt(w)

)2
]| > ϵ


≤ C1T (e−C2Nϵ2/J log2 J + e−C2N/J).

where C1 and C2 are positive constants. □

Lemma F.27. Given alternatives ( j, j
′

) ∈ [J] with bounded utilities such that φ−

J < s jt <
φ+

J and
φ−

J < s j′ t <
φ+

J and a uniformly bounded stochastic process vt(w) where w ∈ B and B is compact,

if φ ≤ φ−

2J , then for any 0 < ϵ < 2

P(sup
w∈B

1
T

∑
t

|1{ŝ jt ∧ ŝ j′ t < φ}{[log s jt − log s j′ t − vt(w)]2}| > ϵ) < C1e−C2N/J

with a positive constant C1.

Proof. By the law of total probability,

P(|1{ŝ jt ∧ ŝ j′ t < φ}{[log s jt − log s j′ t − vt(w)]2}|)

= P(|1{ŝ jt ∧ ŝ j′ t < φ}{[log s jt − log s j′ t − vt(w)]2}| | ŝ jt ∧ ŝ j′ t >
φ−

2J
)P(ŝ jt ∧ ŝ j′ t >

φ−

2J
)︸                                                                                                        ︷︷                                                                                                        ︸

H1

+ P(|1{ŝ jt ∧ ŝ j′ t < φ}{log s jt − log s j′ t − vt(w)]2}| | ŝ jt ∧ ŝ j′ t <
φ−

2J
)P(ŝ jt ∧ ŝ j′ t <

φ−

2J
)︸                                                                                                       ︷︷                                                                                                       ︸

H2

.

Since φ < φ−

2J , we have H1 = 0. And

H2 ≤ P(ŝ jt <
φ−

2J
) ≤ e−φ

−2N/8c1 J

Then, we use the union bound inequality to derive the result. □

Lemma F.28. Given alternatives j and j
′

with bounded utilities and a uniformly bounded stochas-

tic process vt(w) where w ∈ B. If J = o(N) and φ ≤ c0
2J , then for any 0 < ϵ < 2

P
| sup

w∈B

1
T

∑
t

1{ŝ jt ∧ ŝ j′ t > φ}
[
log ŝ jt − log ŝ j′ t − vt(w)

]2
−

[
log s jt − log s j′ t − vt(w)

]2
| > ϵ


< C1T (e−C2Nϵ2/J log2 J + e−C2N/J)
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where C1 and C2 are positive constants.

Proof. This is a direct application of the union bound. □

G Supplementary figures

Figure 6: Polynomial surfaces and points for same vs. different nest pairs (Nested Logit)

(a) The same nest

(b) Different nests

H Connect FML to Topic Model

Example 3 (Topic Model) In natural language processing, the most common interpretable mod-
els are topic models (Ash and Hansen, 2023). We observe documents t ∈ [T ] based on a dictio-
nary of j ∈ [J] terms. There are latent topics k ∈ [K] for generating the documents. We assume
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that the probability of a term j appearing in a given entry of document t, s jt, is given by

s jt =

K∑
k=1

Pt(Topic k)P(Term j | Topic k) =
K∑

k=1

πktAk j,

or equivalently,

P = A⊤W,

where P ∈ RJ×T , A ∈ RK×J, and W ∈ RK×T with P jt = s jt and Wkt = πkt. In Appendix I.3
we show that for any set of {Ak j}, there exists {uk j} such that Ak j =

1Jk ( j)euk j∑
i∈Jk

euik for j ∈ [J] and k ∈

[K]. Specifically, their models ignore covariate x jt while our models allow for variations in the
probabilities of terms conditional on topics by the logit models. Such an extension is meaningful.
In economic applications of policy communications, the words used in the documents rely on the
economic conditions and political parties. Violating the basic assumptions of the topic models
can bring about difficulty in interpretations of the results from misspecification (Ke et al., 2019).

I Identification without unobserved characteristics

I.1 Extra notation

For a generic matrix Q ∈ Rd×m, we let Qi· and Q· j be the ith row and jth column of Q. Finally,
write the d × d diagonal matrix

DQ := diag(||Q1·||1, . . . , ||Qd·||1)

and let (DQ)ii denote the i-th diagonal element. Finally, we denote Qrow := D−1
Q Q as the row

normalization of matrix Q.

I.2 Non-identification with unobserved characteristics

Here, we present an illustrated example demonstrating that identical observed probabilities can
be depicted through two different types of mixtures. The matrix entries denote the probabilities
of products occurring within these mixtures, with four products represented in the rows and three
mixture types. With unobserved characteristics, the matrix values in A are arbitrary.
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A =


1
2

1
2

1
2

1
2

1
2

1
2

 and W =


1
3
1
3
1
3

, we have AW =


1
2
1
6
1
6
1
6

.
For an alternative representation,

Ã =


1
3

1
3

2
3

2
3

2
3

1
3

 and W̃ =


1
4
1
4
1
2

, we also have ÃW̃ =


1
2
1
6
1
6
1
6


This example underscores that, even with knowledge about the product-mixture associations,

determining the probabilities of mixtures and utilities requires additional assumptions.

I.3 Connection to topic model

We show that for any given set of {Ak j}, there exists a set of {uk j} such that for all j ∈ [J] and
k ∈ K, the following holds:

Ak j =
1Jk( j) euk j∑

i∈Jk
euki

.

Without loss of generality, we fix k for the analysis. The set Jk is specified as Jk = { j ∈

J | Ak j > 0}. Also, for any j where Ak j > 0, let uk j = log Ak j. This specification supports the
argument that Ak j =

1Jk ( j) euk j∑
i∈Jk

euki because
∑

i∈Jk
Aki = 1.

I.4 Identification assumption: Seperability

Definition 6. A column stochastic, rank K matrix A ∈ RK×J is said to be separable if there exists

a row permutation matrix Π such that

ΠA⊤ =

D

M

 , (17)

where D ∈ RK×K is a diagonal nonnegative matrix.

It will be convenient to have an explicit definition of what it means to say that P admits a

nonnegative separable matrix factorization:

Definition 7. A column stochastic matrix P ∈ RJ×T with nonnegative rank K is said to have a

rank K separable (or anchor-word) factorization if P can be written as P = A⊤W,where A ∈ RK×J

is some matrix that satisfies Definition 6, and W is a K × D column stochastic matrix.
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I.5 Identification without unobserved characteristics

Definition 8. A loner of a row-normalized matrix is a row r which is not a convex combination

of at least two rows, r′, r′′, with r , r′ and r , r′′.

Assume p jt = p j for t ∈ [T ] in (3) that there is no variation of the prices in the markets. We denote
Ak j = s∗j(p|Ck) and Wkt = πkt. If both A and W have full rank K and A satisfies the separability
assumption, then model (3) is identified up to permutations.

Proof. We let s = A⊤W rely on the row normalization of share matrix s. Let A∗⊤ = D−1
P A⊤DW

then Prow = A∗⊤W row. And we rely on the loners for the identification. W is of full rank, and DW

is of full rank by the nonnegativity. Therefore, W row is of full rank as well, and the rows in the
W row are loners. Then, we want to show that the loners in Prow are rows in W row.

Firstly, we show the rows in the Prow are convex combinations of the rows in W row. This is
because A∗1K = A∗W row

1T = Prow
1T = 1D. We then show that if a row in A represents an anchor

word, the corresponding row in A∗⊤ is a unit vector on a standard basis. Right multiplication of
D−1

P multiplies the rows by fixed numbers, and left multiplication of DW multiplies the columns
by fixed numbers. Neither of the operations changes the sparsity pattern of the matrix.

With the rows in Prow are linear combinations of row in W row, we prove that the all rows
in W row can be found by loners in Prow. We prove this by contradiction. As we discussed,
due to that each anchor word exists for each topic and therefore the sparsity pattern of A∗⊤, all
rows of W row appear in Prow. If W row

1 is a strictly positive linear combination of {Prow
m1
, · · · , Prow

ml
}

and Prow
m1
, W row

1 . That is W row
1 =

∑l
i=1 aiProw

mi
and ai > 0. Since {Prow

m1
, · · · , Prow

ml
} are linear

combinations of {W row
1 , · · · ,W row

k }, Prow
mi
=

∑k
j=1 ai jW row

j for ai j ≥ 0 and there exists j
′

≥ 2 s.t.
a1 j′ > 0 . Then

W row
1 =

l∑
i=1

ai

k∑
j=1

ai jW row
j =

k∑
j=1

l∑
i=1

aiai jW row
j• .

The weight of W row
j′

is larger than 0 so W row
1 is not a loner. This is a contradiction.

For the rows other than W row in Prow, they are all linear combinations of rows in W̃. Therefore
the loners in Prow are rows in W row. We can recover W row by checking the loners in Prow. We can
derive A∗ by A∗ = ProwW row+. Then A can be calculated by column normalizing DpA∗. □

I.6 Separability with unobserved characteristics

For P1 = A⊤1 W1 with dimension J × T1 and P2 = A⊤2 W2 with dimension J × T2, we assume all
A1, A2, W1, and W2 have full rank K. The anchor pattern of A1 and A2 are the same but A1 , A2.
Then there does not exist NMF under the separability assumption for P = [P1, P2]
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Proof. We prove this by contradiction. We will show that A1 = A2 if NMF for P exists under
the separability assumption. Assume there exists P = A⊤W and A satisfies the anchor word
factorization. We have A⊤W̃1 = A1W1 and A⊤W̃2 = A2W2 where W̃1 is the first T1 columns of
W and W̃2 is the last T2 columns of W. Since A1 and A2 satisfy the anchor word assumption, by
the uniqueness of the anchor word factorization for P1 and P2, we have A1 = A = A2, which is a
contradiction. □
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